Quasi-periodic solutions for Schrodinger equation with derivative nonlinearity (|u|2pu)x
被引:4
|
作者:
Shi, Yanling
论文数: 0引用数: 0
h-index: 0
机构:
Yancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R ChinaYancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
Shi, Yanling
[1
]
Lu, Xuezhu
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R ChinaYancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
Lu, Xuezhu
[2
]
Xu, Junxiang
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R ChinaYancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
Xu, Junxiang
[2
]
Xu, Xindong
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R ChinaYancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
Xu, Xindong
[2
]
机构:
[1] Yancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
来源:
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL
|
2015年
/
30卷
/
02期
关键词:
37N10;
37K55;
35Q35;
normal form;
quasi-periodic solution;
Schrodinger equation;
KAM theory;
PARTIAL-DIFFERENTIAL-EQUATIONS;
KAM THEOREM;
HAMILTONIAN-SYSTEMS;
WAVE-EQUATION;
PERTURBATIONS;
TORI;
D O I:
10.1080/14689367.2014.993924
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, one-dimensional derivative Schrodinger equation,with periodic boundary condition is considered. It is proved that the above equation admits a Whitney smooth family of small amplitude, quasi-periodic solutions with two-dimensional Diophantine frequencies. The proof is based on infinite-dimensional Kolmogorov-Arnold-Moser (KAM) theory, partial Birkhoff normalization and scaling skills.
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China