Quasi-periodic solutions for Schrodinger equation with derivative nonlinearity (|u|2pu)x

被引:4
|
作者
Shi, Yanling [1 ]
Lu, Xuezhu [2 ]
Xu, Junxiang [2 ]
Xu, Xindong [2 ]
机构
[1] Yancheng Inst Technol, Dept Basic Sci, Yancheng 224051, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2015年 / 30卷 / 02期
关键词
37N10; 37K55; 35Q35; normal form; quasi-periodic solution; Schrodinger equation; KAM theory; PARTIAL-DIFFERENTIAL-EQUATIONS; KAM THEOREM; HAMILTONIAN-SYSTEMS; WAVE-EQUATION; PERTURBATIONS; TORI;
D O I
10.1080/14689367.2014.993924
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, one-dimensional derivative Schrodinger equation,with periodic boundary condition is considered. It is proved that the above equation admits a Whitney smooth family of small amplitude, quasi-periodic solutions with two-dimensional Diophantine frequencies. The proof is based on infinite-dimensional Kolmogorov-Arnold-Moser (KAM) theory, partial Birkhoff normalization and scaling skills.
引用
收藏
页码:158 / 188
页数:31
相关论文
共 50 条