Spectrum of Laplacians on periodic graphs with guides

被引:0
|
作者
Saburova, N. [1 ]
Korotyaev, E. [2 ]
机构
[1] Northern Arctic Fed Univ, Dept Math Anal Algebra & Geometry, Arkhangelsk, Russia
[2] St Petersburg State Univ, Dept Higher Math & Math Phys, St Petersburg, Russia
关键词
MAGNETIC SCHRODINGER-OPERATORS; ZIGZAG NANORIBBONS; DISCRETE GRAPHS; LOCALIZATION; LATTICES; FIELDS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider Laplace operators on periodic discrete graphs perturbed by guides, i.e., graphs which are periodic in some directions and finite in other ones. We show that the spectrum of the Laplacian on the perturbed graph consists of the spectrum of the Laplacian on the unperturbed periodic graph and the additional so-called guided spectrum which is a union of a finite number of bands. We estimate the position of the guided bands and their length in terms of geometric parameters of the graph. We also determine the asymptotics of the guided bands for guides with large multiplicity of edges.
引用
收藏
页码:282 / 287
页数:6
相关论文
共 50 条
  • [1] Laplacians on periodic graphs with guides
    Korotyaev, Evgeny
    Saburova, Natalia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1444 - 1469
  • [2] Invariants for Laplacians on periodic graphs
    Evgeny Korotyaev
    Natalia Saburova
    Mathematische Annalen, 2020, 377 : 723 - 758
  • [3] Invariants for Laplacians on periodic graphs
    Korotyaev, Evgeny
    Saburova, Natalia
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 723 - 758
  • [4] On the lp spectrum of Laplacians on graphs
    Bauer, Frank
    Hua, Bobo
    Keller, Matthias
    ADVANCES IN MATHEMATICS, 2013, 248 : 717 - 735
  • [5] Effective masses for Laplacians on periodic graphs
    Korotyaev, Evgeny
    Saburova, Natalia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 104 - 130
  • [6] Eigenfunctions of Laplacians on periodic metric graphs
    Korotyaev, E.
    Saburova, N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD), 2016, : 223 - 228
  • [7] Invariants and spectral estimates for Laplacians on periodic graphs
    Saburova, N.
    Korotyaev, E.
    2018 DAYS ON DIFFRACTION (DD), 2018, : 263 - 268
  • [8] PURE POINT SPECTRUM OF THE LAPLACIANS ON FRACTAL GRAPHS
    MALOZEMOV, L
    TEPLYAEV, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 129 (02) : 390 - 405
  • [9] ESTIMATES OF BANDS FOR LAPLACIANS ON PERIODIC EQUILATERAL METRIC GRAPHS
    Korotyaev, Evgeny
    Saburova, Natalia
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) : 1605 - 1617
  • [10] n-Laplacians on Metric Graphs and Almost Periodic Functions: I
    Pavel Kurasov
    Jacob Muller
    Annales Henri Poincaré, 2021, 22 : 121 - 169