Assignable polynomials to linear systems over von Neumann regular rings

被引:2
|
作者
Saez-Schwedt, A. [1 ]
机构
[1] Univ Leon, Dept Matemat, E-24071 Leon, Spain
关键词
Systems over commutative rings; Commutative von Neumann regular rings; Polynomials assignable by state feedback; CONVOLUTIONAL-CODES;
D O I
10.1016/j.laa.2014.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a system (A, B) over a commutative von Neumann regular ring R, it is proved that there exist a matrix F and a vector u such that the single-input system (A + BF, Bu) and the original system (A, B) have the same module of reachable states and the same set of polynomials assignable by state feedback. Moreover, there is a bijection between reachable states and assignable polynomials, in the form of a certain isomorphism of R-modules, and the existence of this isomorphism for all systems actually characterizes von Neumann regular rings. Finally, the set of assignable polynomials to a single-input system is completely described for arbitrary commutative rings, which in the case of von Neumann regular rings completes the study of assignable polynomials to multi-input systems. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 50 条
  • [1] Feedback classification of linear systems over von Neumann regular rings
    Saez-Schwedt, Andres
    Schmale, Wiland
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (04) : 1852 - 1862
  • [2] Rosenbrock's theorem for systems over von Neumann regular rings
    Carriegos, M. V.
    Hermida-Alonso, J. A.
    Saez-Schwedt, A.
    Sanchez-Giralda, T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 482 : 122 - 130
  • [3] Canonical Forms for Reachable Systems over Von Neumann Regular Rings
    Saez-Schwedt, Andres
    MATHEMATICS, 2022, 10 (11)
  • [4] ON φ-VON NEUMANN REGULAR RINGS
    Zhao, Wei
    Wang, Fanggui
    Tang, Gaohua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 219 - 229
  • [5] On von Neumann regular rings
    Hong, CY
    Kim, JY
    Kim, NK
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) : 791 - 801
  • [6] Multipliers of Von Neumann regular rings
    Ara, P
    Perera, F
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) : 3359 - 3385
  • [7] On von Neumann regular rings with an automorphism
    Hrushovski, Ehud
    Point, Francoise
    JOURNAL OF ALGEBRA, 2007, 315 (01) : 76 - 120
  • [8] (VON-NEUMANN) REGULAR RINGS
    MING, RYC
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1974, 19 (MAR) : 89 - 91
  • [9] A characterization of von Neumann rings in terms of linear systems
    DeCastro-Garcia, Noemi
    Carriegos, Miguel V.
    Munioz Castaneda, Angel Luis
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 494 : 236 - 244
  • [10] Symplectic Modules and von Neumann Regular Matrices over Commutative Rings
    Lam, T. Y.
    Swan, R. G.
    ADVANCES IN RING THEORY, 2010, : 213 - +