DEGENERATION OF INTERMEDIATE JACOBIANS AND THE TORELLI THEOREM

被引:0
|
作者
Basu, Suratno [1 ]
Dan, Ananyo [2 ]
Kaur, Inder [3 ]
机构
[1] HBNI, Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[2] BCAM, Alameda Mazarredo 14, Bilbao 48009, Spain
[3] Inst Matematica Pura & Aplicada, Estr Dona Castorina,110 Jardim Bot, BR-22460320 Rio De Janeiro, RJ, Brazil
来源
DOCUMENTA MATHEMATICA | 2019年 / 24卷
关键词
Torelli theorem; intermediate Jacobians; Neron models; nodal curves; Gieseker moduli space; limit mixed Hodge structures; UNIVERSAL MODULI SPACE; VECTOR-BUNDLES; CURVES; LIMITS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mumford and Newstead generalized the classical Torelli theorem to higher rank, i.e. a smooth, projective curve X is uniquely determined by the second intermediate Jacobian of the moduli space of stable rank 2 bundles on X, with fixed odd degree determinant. In this article we prove the analogous result in the case X is an irreducible nodal curve with one node. As a byproduct, we obtain the degeneration of the second intermediate Jacobians and the associated Neron model of a family of such moduli spaces.
引用
收藏
页码:1739 / 1767
页数:29
相关论文
共 50 条