Vision Powered Conversational AI for Easy Human Dialogue Systems

被引:3
|
作者
Basnyat, Bipendra [1 ]
Singh, Neha [1 ]
Roy, Nirmalya [1 ]
Gangopadhyay, Aryya [1 ]
机构
[1] UMBC, Dept Informat Syst, Baltimore, MD 21250 USA
基金
美国国家科学基金会;
关键词
Chatbot; Deep Learning; Natural Language Processing; Computer Vision; Mobile computing;
D O I
10.1109/MASS50613.2020.00088
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an end to end goal-oriented conversational AI agent that can provide contextual information from a potential hazard site. We posit the conversational agent as a FloodBot capable of seeing, sensing, assessing hazard condition, and ultimately conversing about them. We present our domain-specific FloodBot design-solution and learning-experience from the real-time deployment in a flash flood devastated city that uses state-of-the-art deep learning models. We specifically used computer vision and pertinent natural language processing technologies to empower the conversation power of the FloodBot. To deliver such practical and usable AI, we chain multiple deep learning frameworks and create a human-friendly question-answer based dialogue system. We present our deployment details from the last five months and validate the results using ongoing COVID19's impact on the area as well.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 50 条
  • [1] Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots
    Seminck, Olga
    COMPUTATIONAL LINGUISTICS, 2023, 49 (01) : 257 - 259
  • [2] Intelligent tutoring systems with conversational dialogue
    Graesser, AC
    VanLehn, K
    Rosé, CP
    Jordan, PW
    Harter, D
    AI MAGAZINE, 2001, 22 (04) : 39 - 51
  • [3] Conversational IA. Dialogue Systems, Conversational Agents, and Chatbots
    Lefevre, Fabrice
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2021, 62 (01): : 68 - 71
  • [4] The Interplay of a Conversational Ontology and AI Planning for Health Dialogue Management
    Teixeira, Milene Santos
    Maran, Vinicius
    Dragoni, Mauro
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 611 - 619
  • [5] Some background on dialogue management and conversational speech for dialogue systems
    Wilks, Yorick
    Catizone, Roberta
    Worgan, Simon
    Turunen, Markku
    COMPUTER SPEECH AND LANGUAGE, 2011, 25 (02): : 128 - 139
  • [6] Human AI conversational systems: when humans and machines start to chat
    Simone Borsci
    Alan Chamberlain
    Elena Nichele
    Mads Bødker
    Tommaso Turchi
    Personal and Ubiquitous Computing, 2024, 28 (6) : 857 - 860
  • [7] Dialogue Systems and Conversational Agents for Patients with Dementia: The Human-Robot Interaction
    Russo, Alessandro
    D'Onofrio, Grazia
    Gangemi, Aldo
    Giuliani, Francesco
    Mongiovi, Misael
    Ricciardi, Francesco
    Greco, Francesca
    Cavallo, Filippo
    Dario, Paolo
    Sancarlo, Daniele
    Presutti, Valentina
    Greco, Antonio
    REJUVENATION RESEARCH, 2019, 22 (02) : 109 - 120
  • [8] An autoregressive conversational dynamics model for dialogue systems
    McNeill, Matthew
    Levitan, Rivka
    INTERSPEECH 2023, 2023, : 4658 - 4662
  • [9] ReqGenie: GPT-Powered Conversational-AI for Requirements Elicitation
    Fotrousi, Farnaz
    Tavantzis, Theocharis
    PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROFES 2024, 2025, 15452 : 352 - 359
  • [10] Evaluating Human-AI Hybrid Conversational Systems with Chatbot Message Suggestions
    Gao, Zihan
    Jiang, Jiepu
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 534 - 544