Lifshitz asymptotics and localization for random quantum waveguides

被引:17
|
作者
Kleespies, F [1 ]
Stollmann, P [1 ]
机构
[1] Goethe Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
关键词
quantum waveguides; domain perturbations; random Schrodinger operators; localization; Lifshitz tails;
D O I
10.1142/S0129055X00000435
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a family of Dirichlet Laplacians on randomly dented or bulged strips in R-2; for this random quantum waveguide model, dense point spectrum with exponentially localized eigenfunctions near its fluctuation boundary at the bottom of the spectrum and Lifshitz asymptotics of the integrated density of states are established. For this purpose, multi-scale analysis in the quite abstract form of [21] is applied, and domain perturbations of the Laplacian are studied.
引用
收藏
页码:1345 / 1365
页数:21
相关论文
共 50 条
  • [1] Localization and Lifshitz tails for random quantum waveguides
    Kleespies, F
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 275 - 279
  • [2] Lifshitz Tails for Quantum Waveguides with Random Boundary Conditions
    Najar, Hatem
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (03)
  • [3] Lifshitz Tails for Quantum Waveguides with Random Boundary Conditions
    Hatem Najar
    Mathematical Physics, Analysis and Geometry, 2019, 22
  • [4] SOURCE LOCALIZATION IN RANDOM ACOUSTIC WAVEGUIDES
    Borcea, Liliana
    Issa, Leila
    Tsogka, Chrysoula
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1981 - 2022
  • [5] Lifshitz tails for acoustic waves in random quantum waveguide
    Najar, Hatem
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (04) : 1093 - 1112
  • [6] Lifshitz Tails for Acoustic Waves in Random Quantum Waveguide
    Hatem Najar
    Journal of Statistical Physics, 2007, 128 : 1093 - 1112
  • [7] Lifshitz asymptotics for percolation Hamiltonians
    Samavat, Reza
    Stollmann, Peter
    Veselic, Ivan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1113 - 1125
  • [8] Incoherent source localization in random acoustic waveguides
    Borcea, L.
    Karasmani, E.
    Tsogka, C.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (01) : 81 - 106
  • [9] Quantum optical random walk: Quantization rules and quantum simulation of asymptotics
    Ellinas, Demosthenes
    Smyrnakis, Ioannis
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [10] Asymptotics of a quantum random walk driven by an optical cavity
    Ellinas, D
    Smyrnakis, I
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (07) : S152 - S157