Inference in binomial AR(1) models

被引:24
|
作者
Cui, Yunwei [1 ]
Lund, Robert [2 ]
机构
[1] Univ Houston Downtown, Comp & Math Sci Dept, Houston, TX 77002 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Autoregression; Renewal processes; Stationary series; VARIATE TIME-SERIES; COUNTS;
D O I
10.1016/j.spl.2010.09.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies inference methods for stationary time series with binomial distributions. Such series describe, for example, the number of rainy days in consecutive weeks. First, we formulate the renewal sequence version of the model that seemingly generates a new class of stationary binomial series. The model is shown to obey an AR(1) recursion in cases where the renewal lifetime has a constant hazard rate past lag one. Explicit asymptotic variances of the parameter estimators in the AR(1) case are derived from conditional least squares methods; likelihood techniques are also considered. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1985 / 1990
页数:6
相关论文
共 50 条
  • [1] Statistical inference for the binomial Ar(1) model with missing data
    Rui Zhang
    Yong Zhang
    Stochastic Environmental Research and Risk Assessment, 2023, 37 : 4755 - 4763
  • [2] Statistical inference for the binomial Ar(1) model with missing data
    Zhang, Rui
    Zhang, Yong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (12) : 4755 - 4763
  • [3] Statistical Inference for the Covariates-driven Binomial AR(1) Process
    Wang, De-hui
    Cui, Shuai
    Cheng, Jian-hua
    Wang, Shu-hui
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (04): : 758 - 772
  • [4] Statistical Inference for the Covariates-driven Binomial AR(1) Process
    De-hui WANG
    Shuai CUI
    Jian-hua CHENG
    Shu-hui WANG
    ActaMathematicaeApplicataeSinica, 2021, 37 (04) : 758 - 772
  • [5] Bayesian empirical likelihood inference for the generalized binomial AR(1) model
    Rui Zhang
    Dehui Wang
    Journal of the Korean Statistical Society, 2022, 51 : 977 - 1004
  • [6] Bayesian empirical likelihood inference for the generalized binomial AR(1) model
    Zhang, Rui
    Wang, Dehui
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (04) : 977 - 1004
  • [7] Statistical Inference for the Covariates-driven Binomial AR(1) Process
    De-hui Wang
    Shuai Cui
    Jian-hua Cheng
    Shu-hui Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 758 - 772
  • [8] Parameter estimation for binomial AR(1) models with applications in finance and industry
    Christian H. Weiß
    Hee-Young Kim
    Statistical Papers, 2013, 54 : 563 - 590
  • [9] Parameter estimation for binomial AR(1) models with applications in finance and industry
    Weiss, Christian H.
    Kim, Hee-Young
    STATISTICAL PAPERS, 2013, 54 (03) : 563 - 590
  • [10] SOME ASPECTS OF INFERENCE FOR CHAIN BINOMIAL MODELS
    YIP, P
    HUGGINS, R
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1995, 13 (03) : 355 - 367