Classification and Liouville type theorems for p-harmonic morphisms

被引:1
|
作者
Liu, Jiancheng [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
p-harmonic morphisms; p-energy density; L-q; -energy; MAPS;
D O I
10.1007/s10711-007-9191-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove firstly the classification theorem for p- harmonic morphisms between Euclidean domains. Secondly, we show that if phi : M -> N is a p-harmonic morphism (p >= 2) from a complete Riemannian manifold M of nonnegative Ricci curvature into a Riemannian manifold N of non-positive scalar curvature such that the L-q-energy is finite, then f is constant, which improve the corresponding result due to G. Choi, G. Yun in (Geometriae Dedicata 101 ( 2003), 53-59).
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条