Combined silencing of TGF-β2 and Snail genes inhibit epithelial-mesenchymal transition of retinal pigment epithelial cells under hypoxia

被引:10
|
作者
Feng, Zhuolei [1 ]
Li, Ruishu [1 ]
Shi, Huanqi [1 ]
Bi, Wenjiao [1 ]
Hou, Wenwen [1 ]
Zhang, Xiaomei [1 ]
机构
[1] Harbin Med Univ, Affiliated Hosp 1, Dept Ophthalmol, Harbin 150001, Heilongjiang, Peoples R China
关键词
Epithelial-mesenchymal transition; Retinal pigment epithelial cell; Transforming growth factor-beta(2); Snail; Hypoxia; Age-related macular degeneration; Multi-gene silencing; E-CADHERIN; TGF-BETA; UP-REGULATION; EXPRESSION; PHENOTYPE; FIBROSIS; SLUG; RPE;
D O I
10.1007/s00417-014-2922-x
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
The formation of scar-like fibrous tissue in age-related macular degeneration (AMD) is associated with hypoxia. Under hypoxia, retinal pigment epithelial (RPE) cells can secret more transforming growth factor-beta(2) (TGF-beta(2)), which is determined to induce epithelial-mesenchymal transition (EMT) at certain concentrations. Whether hypoxia can induce EMT by stimulating RPE cell line secrets TGF-beta(2) or not remains unknown. To gain a better understanding of the signaling mechanisms of fibrosis in AMD under hypoxic conditions, we investigated EMT in retinal pigment epithelial (RPE) cells and the effect of TGF-beta(2) and Snail in this process. Human RPE cell line (ARPE-19) was incubated with 5 % O-2 for different periods of time. The expression of N-cadherin, alpha-smooth muscle actin (alpha-SMA), TGF-beta(2) , and Snail were determined by Western blot and real-time PCR. Cell proliferation was assessed by CCK8 kit. RNA interference was used for multi-gene silencing of TGF-beta(2) and Snail genes. N-cadherin was decreased and mesenchymal cell marker alpha-SMA was increased after the ARPE-19 cell line was incubated with 5 % O-2. Meanwhile, the proliferation capability of the cell line was increased. TGF-beta(2) and Snail expression were increased in a time-dependent manner under hypoxia. After multi-silencing TGF-beta(2) and Snail genes, N-cadherin was increased and alpha-SMA was reduced. Meanwhile, the proliferation of the cell line was suppressed. Under hypoxic conditions, RPE cells undergo EMT. Endogenic TGF-beta(2) and Snail are involved in this process. Furthermore, knockdown of both TGF-beta(2) and Snail inhibited EMT to a greater extent than knockdown of either gene individually.
引用
收藏
页码:875 / 884
页数:10
相关论文
共 50 条
  • [1] Combined silencing of TGF-β2 and Snail genes inhibit epithelial-mesenchymal transition of retinal pigment epithelial cells under hypoxia
    Zhuolei Feng
    Ruishu Li
    Huanqi Shi
    Wenjiao Bi
    Wenwen Hou
    Xiaomei Zhang
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253 : 875 - 884
  • [2] The role of mechanical stretch and TGF-β2 in epithelial-mesenchymal transition of retinal pigment epithelial cells
    Qian Cao
    Qu-Zhen Deji
    Ya-Jun Liu
    Wei Ye
    Wang-Dui Zhaba
    Qin Jiang
    Feng Yan
    International Journal of Ophthalmology, 2019, 12 (12) : 1832 - 1838
  • [3] The role of mechanical stretch and TGF-β2 in epithelial-mesenchymal transition of retinal pigment epithelial cells
    Cao, Qian
    Deji, Qu-Zhen
    Liu, Ya-Jun
    Ye, Wei
    Zhaba, Wang-Dui
    Jiang, Qin
    Yan, Feng
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2019, 12 (12) : 1832 - 1838
  • [4] Nintedanib prevents TGF- ?2-induced epithelial-mesenchymal transition in retinal pigment epithelial cells
    Yin, Yiwei
    Liu, Shikun
    Pu, Li
    Luo, Jing
    Liu, Hanhan
    Wu, Wenyi
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 161
  • [5] Eupatilin attenuates TGF-β2-induced proliferation and epithelial-mesenchymal transition of retinal pigment epithelial cells
    Cinar, Ayca Kupeli
    Ozal, S. Altan
    Serttas, Riza
    Erdogan, Suat
    CUTANEOUS AND OCULAR TOXICOLOGY, 2021, 40 (02) : 103 - 114
  • [6] Overexpression of Snail in retinal pigment epithelial triggered epithelial-mesenchymal transition
    Li, Hui
    Li, Min
    Xu, Ding
    Zhao, Chun
    Liu, Guodong
    Wang, Fang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 446 (01) : 347 - 351
  • [7] Role of heat shock protein 47 in epithelial-mesenchymal transition of retinal pigment epithelial cells stimulated by TGF-β2
    Zhang, Dong-Chang
    Yuan, Li-Li
    Zhang, Zhe
    Lu, Ya-Nan
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2016, 9 (01): : 97 - 103
  • [8] Crocetin inhibits the proliferation, migration and TGF-β2-induced epithelial-mesenchymal transition of retinal pigment epithelial cells
    Wang, Hui-Fang
    Ma, Jing-Xue
    Shang, Qing-Li
    An, Jian-Bin
    Chen, Hai-Ting
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2017, 815 : 391 - 398
  • [9] As shown hesperidin suppresses TGF-β2-induced proliferation and epithelial-mesenchymal transition of retinal pigment epithelial cells
    Cinar, Ayca Kuepeli
    Serttas, Riza
    Cinar, Abdulkadir Can
    Guclu, Hande
    Erdogan, Suat
    JOURNAL OF MOLECULAR HISTOLOGY, 2025, 56 (01)
  • [10] Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells
    Shukal, Dhaval
    Bhadresha, Kinjal
    Shastri, Bhoomi
    Mehta, Deval
    Vasavada, Abhay
    Johar, Kaid S. R.
    EXPERIMENTAL EYE RESEARCH, 2020, 197