Machine-Learning-Based Approach for Diffraction Loss Variation Prediction by the Human Body

被引:4
|
作者
Khalily, Mohsen [1 ]
Brown, Tim W. C. [1 ]
Tafazolli, Rahim [1 ]
机构
[1] Univ Surrey, Inst Commun Syst, Home 5G Innovat Ctr, Guildford GU2 7XH, Surrey, England
来源
关键词
Diffraction loss; Guassian process (GP); machine learning (ML); network planning tool; CHANNEL ESTIMATION;
D O I
10.1109/LAWP.2019.2929289
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a machine learning (ML)-based model to predict the diffraction loss around the human body. Practically, it is not reasonable to measure the diffraction loss changes for all possible body rotation angles, builds, and line-of-sight elevation angles. A diffraction loss variation prediction model based on a non-parametric learning technique called Gaussian process is introduced. Analyzed results state that 86 correlation and normalized mean square error of 0.3 on the test data is achieved using only 40 of measured data. This allows a 60 reduction in required measurements in order to achieve a well-fitted ML loss prediction model. It also confirms the model generalizability for nonmeasured rotation angles.
引用
收藏
页码:2301 / 2305
页数:5
相关论文
共 50 条
  • [1] A Machine-Learning-Based Approach to Prediction of Biogeographic Ancestry within Europe
    Kloska, Anna
    Gielczyk, Agata
    Grzybowski, Tomasz
    Ploski, Rafal
    Kloska, Sylwester M.
    Marciniak, Tomasz
    Palczynski, Krzysztof
    Rogalla-Ladniak, Urszula
    Malyarchuk, Boris A.
    Derenko, Miroslava V.
    Kovacevic-Grujicic, Natasa
    Stevanovic, Milena
    Drakulic, Danijela
    Davidovic, Slobodan
    Spolnicka, Magdalena
    Zubanska, Magdalena
    Wozniak, Marcin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)
  • [2] Machine-Learning-Based Path Loss Prediction for In-Cabin Wireless Networks
    Moraitis, Nektarios
    Tsipi, Lefteris
    Vouyioukas, Demosthenes
    2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024, 2024, : 393 - 398
  • [3] Machine-learning-based approach for nonunion prediction following osteoporotic vertebral fractures
    Takahashi, Shinji
    Terai, Hidetomi
    Hoshino, Masatoshi
    Tsujio, Tadao
    Kato, Minori
    Toyoda, Hiromitsu
    Suzuki, Akinobu
    Tamai, Koji
    Yabu, Akito
    Nakamura, Hiroaki
    EUROPEAN SPINE JOURNAL, 2023, 32 (11) : 3788 - 3796
  • [4] Improving fall prediction in Parkinson's disease: A machine-learning-based approach
    Panyakaew, P.
    Pornputtapong, N.
    Bhidayasiri, R.
    MOVEMENT DISORDERS, 2020, 35 : S306 - S307
  • [5] Machine-Learning-Based Sensor Design for Water Salinity Prediction: A Conceptual Approach
    Mourched, Bachar
    Abdallah, Mariam
    Hoxha, Mario
    Vrtagic, Sabahudin
    SUSTAINABILITY, 2023, 15 (14)
  • [6] Machine-Learning-based Advanced Dynamic Security Assessment: Prediction of Loss of Synchronism in Generators
    Vakili, Ramin
    Khorsand, Mojdeh
    2020 52ND NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2021,
  • [7] Spatio-temporal risk prediction of leptospirosis: A machine-learning-based approach
    Govan, Rodrigue
    Scherrer, Romane
    Fougeron, Baptiste
    Laporte-Magoni, Christine
    Thibeaux, Roman
    Genthon, Pierre
    Fournier-Viger, Philippe
    Goarant, Cyrille
    Selmaoui-Folcher, Nazha
    PLOS NEGLECTED TROPICAL DISEASES, 2025, 19 (01):
  • [8] Machine-learning-based approach for nonunion prediction following osteoporotic vertebral fractures
    Shinji Takahashi
    Hidetomi Terai
    Masatoshi Hoshino
    Tadao Tsujio
    Minori Kato
    Hiromitsu Toyoda
    Akinobu Suzuki
    Koji Tamai
    Akito Yabu
    Hiroaki Nakamura
    European Spine Journal, 2023, 32 : 3788 - 3796
  • [9] Machine-Learning-Based No Show Prediction in Outpatient Visits
    Elvira, C.
    Ochoa, A.
    Gonzalvez, J. C.
    Mochon, F.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2018, 4 (07): : 29 - 34
  • [10] MLACP: machine-learning-based prediction of anticancer peptides
    Manavalan, Balachandran
    Basith, Shaherin
    Shin, Tae Hwan
    Choi, Sun
    Kim, Myeong Ok
    Lee, Gwang
    ONCOTARGET, 2017, 8 (44) : 77121 - 77136