Soil carbon sequestration and soil quality change between no-tillage and conventional tillage soil management after 3 and 11 years of organic farming

被引:21
|
作者
Dewi, Ratih Kemala [1 ,2 ]
Fukuda, Masatake [3 ]
Takashima, Naoya [3 ]
Yagioka, Atsushi [4 ]
Komatsuzaki, Masakazu [3 ]
机构
[1] Tokyo Univ Agr & Technol, United Grad Sch Agr Sci, Fuchu, Tokyo, Japan
[2] IPB Univ, Coll Vocat Studies, Bogor, Indonesia
[3] Ibaraki Univ, Coll Agr, Ibaraki, Japan
[4] NARO, Hokkaido Agr Res Ctr, Sapporo, Hokkaido, Japan
关键词
Carbon; cations; nutrients; organic agriculture; soil; MATTER; AGGREGATE; NITROGEN; IMPACTS; SYSTEMS; YIELD;
D O I
10.1080/00380768.2021.1997552
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aim of this study was to evaluate the long-term effect of no-tillage systems in organic farming on soil carbon sequestration and soil quality, which is associated with nutrient availability. The experiment was conducted on a low-input organic farm since 2009, using a randomized complete block design with four replications. Two treatments, conventional tillage (CT) and no-tillage (NT), were tested. Soil samples were obtained after crops were harvested in 2012 and 2020 from four different soil depth layers between 0-30 cm, and the physical and chemical properties of soil samples were measured. Data were analyzed using ANOVA with Tukey tests (alpha = 0.05), while the correlation was analyzed based on Pearson correlation. At 0-2.5 cm and 2.5-7.5 cm depths, soil bulk density (BD) in the NT treatment was 30% and 8% lower, respectively, in 2012, and 25% and 14% lower, respectively, in 2020 compared with the CT treatment. The NT treatment could enhance the soil organic carbon (SOC) better than CT treatment at the same depth, sequestering a greater amount of carbon in the soil. Compared with the CT treatment, SOC concentration in the NT treatment was 76% and 12% higher, respectively, in 2012, and 103% and 38% higher, respectively, in 2020. In 2012, the SOC stock showed a significant difference between NT and CT treatments only at the 0-2.5 cm soil depth, with the value being 24% higher in the NT treatment than in the CT treatment. However, in 2020, the SOC stock was 50% and 19% higher in the NT treatment than in the CT treatment at 0-2.5 cm and 2.5-7.5 cm depths, respectively. The SOC also could significantly expand cation exchange capacity (CEC) and the availability of some nutrients in the soil. However, the relationship between was weak in 2020. Moreover, the NT treatment showed better progression of humification than CT. Finally, long-term NT systems in low-input organic farming could reduce soil bulk density and enhance soil carbon sequestration and soil quality. However, this system must be complemented with the conventional approach to maintain nutrient balance for long-term management.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 50 条
  • [1] A wide view of no-tillage practices and soil organic carbon sequestration
    Yang, Xueming
    Drury, Craig F.
    Wander, Michelle M.
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2013, 63 (06): : 523 - 530
  • [2] Strategies for soil conservation in no-tillage and organic farming systems
    Teasdale, John R.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2007, 62 (06) : 144A - 147A
  • [3] Soil organic carbon changes after 12 years of no-tillage and tillage of Grantsburg soils in southern Illinois
    Olson, KR
    Lang, JM
    Ebelhar, SA
    SOIL & TILLAGE RESEARCH, 2005, 81 (02): : 217 - 225
  • [4] Comparison of Soil Fauna (Oribatids and Enchytraeids)Between Conventional and Organic (Tillage and No-Tillage Practices) Farming Crop Fields in Japan
    M. FUJITA and S. FUJIYAMA (International Nature Farming Research Center
    Pedosphere, 2001, (01) : 11 - 20
  • [5] Differentiation of Soil Fauna Populations in Conventional Tillage and No-Tillage Red Soil Ecosystems
    HU FENG
    LI HUIXIN and WU SHANMEI(Nanjing Agriculturol University
    Pedosphere, 1997, (04) : 339 - 348
  • [6] Effects of Conventional Tillage and Conservation Tillage on Soil Organic Carbon
    Jia, Songwei
    ADVANCES IN ENVIRONMENTAL TECHNOLOGIES, PTS 1-6, 2013, 726-731 : 3832 - 3836
  • [7] Effect of no-tillage with straw mulch and conventional tillage on soil organic carbon pools in Northern China
    Si, Pengfei
    Liu, Enke
    He, Wenqing
    Sun, Zhanxiang
    Dong, Wenyi
    Yan, Changrong
    Zhang, Yanqing
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2018, 64 (03) : 398 - 408
  • [8] Soil physical quality in contrasting tillage systems in organic and conventional farming
    Crittenden, S. J.
    Poot, N.
    Heinen, M.
    van Balen, D. J. M.
    Pulleman, M. M.
    SOIL & TILLAGE RESEARCH, 2015, 154 : 136 - 144
  • [9] Soil quality indicators as influenced by no-tillage, conventional tillage and nitrogen fertilization after 3 years of continuous maize in the Po Valley
    Tabaglio, V.
    Gavazzi, C.
    Beone, G. M.
    AGROCHIMICA, 2009, 53 (02): : 117 - 128
  • [10] NO-TILLAGE IMPACTS ON SOIL ORGANIC CARBON IN A BLACK SOIL IN NORTHEAST CHINA
    Chen, Xuewen
    Shi, Xiuhuan
    Zhang, Xiaoping
    Liang, Aizhen
    Jia, Shuxia
    Fan, Ruqin
    Wei, Shoucai
    FRESENIUS ENVIRONMENTAL BULLETIN, 2011, 20 (12): : 3199 - 3205