A comparative assessment of similarity measures for registration of multi-temporal remote sensing images

被引:86
|
作者
Chen, HM [1 ]
Arora, MK [1 ]
Varshney, PK [1 ]
机构
[1] Univ Texas, Dept Comp Sci & Engn, Arlington, TX 76019 USA
关键词
D O I
10.1142/9789812702630_0001
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate registration of multi-temporal remote sensing images is essential for various change detection applications. Mutual information (MI) has been used as a similarity measure for registration of medical images widely. Its application in remote sensing is relatively new. A number of algorithms may be used to estimate the joint histogram to compute mutual information, but they may suffer from interpolation-induced artifacts Linder certain conditions. In this paper, we investigate the use of a new joint histogram estimation algorithm called generalized partial volume estimation (GPVE) for computing mutual information to register multi-temporal remote sensing images. The performance is evaluated with other popular similarity measures namely mean squared difference (MSD) and non-nalized cross correlation (NCC) The experimental results show that higher order GPVE algorithms have the ability to significantly reduce interpolation-induced artifacts. In addition, mutual information based image registration performed using the GPVE algorithm produces better registration consistency than the other two similarity measures used for the registration of multi-temporal remote sensing images.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 50 条
  • [1] Automatic registration of multi-temporal remote sensing images based on nature-inspired techniques
    Senthilnath, J.
    Yang, X. -S.
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2014, 5 (04) : 263 - 284
  • [2] Multi-temporal satellite remote sensing images registration in mountainous forestland based on robust PCA
    Zhang, Peijing
    Luo, Xiaoyan
    Liao, Junfan
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VII, 2020, 11550
  • [3] ROTATION-INVARIANT SELF-SIMILARITY DESCRIPTOR FOR MULTI-TEMPORAL REMOTE SENSING IMAGE REGISTRATION
    Mohammadi, Nazila
    Sedaghat, Amin
    Rad, Mahya Jodeiri
    PHOTOGRAMMETRIC RECORD, 2022, 37 (177): : 6 - 34
  • [4] Multi-temporal assessment of a wildfire chronosequence by remote sensing
    Ferrari, F. Najera De
    Duarte, E.
    Smith-Ramirez, C.
    Rendon-Funes, A.
    Gonzalez, V. Sepulveda
    Gonzalez, N. Sepulveda
    Levio, M. F.
    Rubilar, R.
    Stehr, A.
    Merino, C.
    Jofre, I.
    Rojas, C.
    Aburto, F.
    Kuzyakov, Y.
    Filimonenko, E.
    Doerner, J.
    Pereira, P.
    Matus, F.
    METHODSX, 2024, 13
  • [5] Image registration based on mutual information for multi-temporal remote sensing
    ATR National Lab., NUDT, Changsha 410073, China
    Yuhang Xuebao, 2006, 4 (690-694+708):
  • [6] Review and prospect in change detection of multi-temporal remote sensing images
    Zhang Z.
    Jiang H.
    Pang S.
    Hu X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (07): : 1091 - 1107
  • [7] Analyzing landslide with multi-temporal remote sensing images and DEM data
    Song, Y
    Fan, XT
    Lu, XC
    Liu, JH
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 5237 - 5239
  • [8] Nonlinear intensity difference correlation for multi-temporal remote sensing images
    Ji, Shunping
    Zhang, Tong
    Guan, Qingfeng
    Li, Junli
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 21 : 436 - 443
  • [9] Urban fringe defining based on multi-temporal remote sensing images
    Yang, Yetao
    Wang, Yingying
    NEAR-SURFACE GEOPHYSICS AND HUMAN ACTIVITY, 2008, : 504 - 507
  • [10] Research on change detection technology in multi-temporal remote sensing images
    Huang L.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (06): : 801