Validating markerless pose estimation with 3D X-ray radiography

被引:4
|
作者
Moore, Dalton D. [1 ]
Walker, Jeffrey D. [2 ]
MacLean, Jason N. [1 ,3 ,4 ]
Hatsopoulos, Nicholas G. [1 ,2 ,4 ]
机构
[1] Univ Chicago, Comm Computat Neurosci, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Organismal Biol & Anat, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA
[4] Univ Chicago, Neurosci Inst, Chicago, IL 60637 USA
来源
JOURNAL OF EXPERIMENTAL BIOLOGY | 2022年 / 225卷 / 09期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DeepLabCut; Markerless tracking; Marmoset; Anipose; XROMM; Pose estimation;
D O I
10.1242/jeb.243998
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To reveal the neurophysiological underpinnings of natural movement, neural recordings must be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing it with a 3D X-ray video radiography system that tracks markers placed under the skin (XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the forelimb and torso and found a low median error (0.228 cm) between the two modalities corresponding to 2.0% of the range of motion. For studies allowing this relatively small error, DLC and similar markerless pose estimation tools enable the study of increasingly naturalistic behaviors in many fields including non-human primate motor control.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Anipose: A toolkit for robust markerless 3D pose estimation
    Karashchuk, Pierre
    Rupp, Katie L.
    Dickinson, Evyn S.
    Walling-Bell, Sarah
    Sanders, Elischa
    Azim, Eiman
    Brunton, Bingni W.
    Tuthill, John C.
    CELL REPORTS, 2021, 36 (13):
  • [2] 3D Pose Estimation of Markerless Fish on Deep Learning
    Wang, Yuanchang
    Cao, Jianrong
    Wang, Ming
    Zhao, Qianchuan
    Gao, He
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 261 - 274
  • [3] VISUALISATION OF DYNAMIC ADSORPTION BY 2D X-RAY RADIOGRAPHY AND 3D X-RAY μ-TOMOGRAPHY
    Almazan-Almazan, M. C.
    Leonard, A.
    Toye, D.
    Lodewyckx, P.
    Pirard, J. P.
    Lopez-Garzon, F. J.
    Blacher, S.
    CHARACTERISATION OF POROUS SOLIDS VIII, 2009, (318): : 233 - 239
  • [4] Using DeepLabCut for 3D markerless pose estimation across species and behaviors
    Nath, Tanmay
    Mathis, Alexander
    Chen, An Chi
    Patel, Amir
    Bethge, Matthias
    Mathis, Mackenzie Weygandt
    NATURE PROTOCOLS, 2019, 14 (07) : 2152 - 2176
  • [5] Validation of deep learning-based markerless 3D pose estimation
    Kosourikhina, Veronika
    Kavanagh, Diarmuid
    Richardson, Michael J.
    Kaplan, David M.
    PLOS ONE, 2022, 17 (10):
  • [6] A review of 3D human pose estimation algorithms for markerless motion capture
    Desmarais, Yann
    Mottet, Denis
    Slangen, Pierre
    Montesinos, Philippe
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 212
  • [7] Robust 3D pose estimation of artificial knee implants from X-ray fluoroscopic images
    Ogasawara, M.
    Yamazaki, T.
    Sato, Y.
    Watanabe, T.
    Sugamoto, K.
    Tomita, T.
    Yoshikawa, H.
    Tamura, S.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2006, 1 : 245 - 249
  • [8] Markerless multi-view 3D human pose estimation: A survey
    Nogueira, Ana Filipa Rodrigues
    Oliveira, Helder P.
    Teixeira, Luis F.
    IMAGE AND VISION COMPUTING, 2025, 155
  • [9] Using DeepLabCut for 3D markerless pose estimation across species and behaviors
    Tanmay Nath
    Alexander Mathis
    An Chi Chen
    Amir Patel
    Matthias Bethge
    Mackenzie Weygandt Mathis
    Nature Protocols, 2019, 14 : 2152 - 2176
  • [10] Image processing for X-ray transmission radiography with 3D voxel detector
    Jandejsek, I.
    Soukup, P.
    Jakubek, J.
    JOURNAL OF INSTRUMENTATION, 2011, 6