SELECTING THE NUMBER OF PRINCIPAL COMPONENTS: ESTIMATION OF THE TRUE RANK OF A NOISY MATRIX

被引:46
|
作者
Choi, Yunjin [1 ]
Taylor, Jonathan [2 ]
Tibshirani, Robert [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Block S16,Level 6,Sci Dr 2, Singapore 117546, Singapore
[2] Stanford Univ, Dept Stat, 390 Serra Mall, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Hlth Res & Policy, 390 Serra Mall, Stanford, CA 94305 USA
来源
ANNALS OF STATISTICS | 2017年 / 45卷 / 06期
关键词
Principal components; hypothesis test; exact p-value; REGRESSION;
D O I
10.1214/16-AOS1536
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis (PCA) is a well-known tool in multivariate statistics. One significant challenge in using PCA is the choice of the number of principal components. In order to address this challenge, we propose distribution-based methods with exact type 1 error controls for hypothesis testing and construction of confidence intervals for signals in a noisy matrix with finite samples. Assuming Gaussian noise, we derive exact type 1 error controls based on the conditional distribution of the singular values of a Gaussian matrix by utilizing a post-selection inference framework, and extending the approach of [Taylor, Loftus and Tibshirani (2013)] in a PCA setting. In simulation studies, we find that our proposed methods compare well to existing approaches.
引用
收藏
页码:2590 / 2617
页数:28
相关论文
共 50 条