Scale-Invariant Biomarker Discovery in Urine and Plasma Metabolite Fingerprints

被引:15
|
作者
Zacharias, Helena U. [1 ]
Rehberg, Thorsten [1 ,2 ]
Mehrl, Sebastian [1 ,2 ]
Richtmann, Daniel [3 ]
Wettig, Tilo [3 ]
Oefner, Peter J. [1 ]
Spang, Rainer [1 ,2 ]
Gronwald, Wolfram [1 ]
Altenbuchinger, Michael [1 ,2 ]
机构
[1] Univ Regensburg, Inst Funct Genom, Biopk 9, D-93053 Regensburg, Germany
[2] Univ Regensburg, Stat Bioinformat, Biopk 9, D-93053 Regensburg, Germany
[3] Univ Regensburg, Dept Phys, Univ Str 31, D-93053 Regensburg, Germany
关键词
metabolomics; NMR; LASSO; zero-sum; normalization; scaling; ACUTE KIDNEY INJURY; DATA NORMALIZATION; CARDIAC-SURGERY; DATA SETS; NMR; METABOLOMICS; REGRESSION; SELECTION; DISEASE; MODEL;
D O I
10.1021/acs.jproteome.7b00325
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics data is typically scaled to a common reference like a constant volume of body fluid, a constant creatinine level, or a constant area under the spectrum. Such scaling of the data, however, may affect the selection of biomarkers and the biological interpretation of results in unforeseen ways. Here, we studied how both the outcome of hypothesis tests for differential metabolite concentration and the screening for multivariate metabolite signatures are affected by the choice of scale. To overcome this problem for metabolite signatures and to establish a scale-invariant biomarker discovery algorithm, we extended linear zero-sum regression to the logistic regression framework and showed in two applications to H-1 NMR-based metabolomics data how this approach overcomes the scaling problem. Logistic zero-sum regression is available as an R package as well as a high-performance computing implementation that can be downloaded at https://github.com/rehbergT/zeroSum.
引用
收藏
页码:3596 / 3605
页数:10
相关论文
共 50 条
  • [1] Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence
    Kiyani, K. H.
    Chapman, S. C.
    Khotyaintsev, Yu. V.
    Dunlop, M. W.
    Sahraoui, F.
    PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [2] Scale-invariant inflation
    Rinaldi, M.
    Cecchini, C.
    Ghoshal, A.
    Mukherjee, D.
    AVENUES OF QUANTUM FIELD THEORY IN CURVED SPACETIME, AQFTCS 2022, 2023, 2531
  • [3] ON SCALE-INVARIANT DISTRIBUTIONS
    WHITTAKER, JV
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (02) : 257 - 267
  • [4] Scale-invariant groups
    Nekrashevych, Volodymyr
    Pete, Gabor
    GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (01) : 139 - 167
  • [5] PARAMETRIZATION OF SCALE-INVARIANT SELF-ADJOINT EXTENSIONS OF SCALE-INVARIANT SYMMETRIC OPERATORS
    Bekker, Miron B.
    Bohner, Martin J.
    Ugol'nikov, Alexander P.
    Voulov, Hristo
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2018, 24 (01): : 1 - 15
  • [6] A scale-invariant feature map
    Fyfe, C
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1996, 7 (02) : 269 - 275
  • [7] The scale-invariant scotogenic model
    Ahriche, Amine
    McDonald, Kristian L.
    Nasri, Salah
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [8] Scale-invariant features on the sphere
    Hansen, Peter
    Corke, Peter
    Boles, Wageeh
    Daniilidis, Kostas
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 512 - +
  • [9] The scale-invariant scotogenic model
    Amine Ahriche
    Kristian L. McDonald
    Salah Nasri
    Journal of High Energy Physics, 2016
  • [10] WAVES IN SCALE-INVARIANT SYSTEMS
    KUZNETSOV, AP
    KUZNETSOV, SP
    MELNIKOV, LA
    OSIN, AB
    ROZHNEV, AG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1983, 26 (04): : 415 - 420