Segmentation of subtraction images for the measurement of lesion change in multiple sclerosis

被引:26
|
作者
Duan, Y. [1 ,2 ,3 ]
Hildenbrand, P. G. [1 ,2 ,4 ]
Sampat, M. P. [1 ,2 ]
Tate, D. F. [1 ,2 ,5 ]
Csapo, I. [1 ,2 ]
Moraal, B. [6 ]
Bakshi, R. [1 ,2 ]
Barkhof, F. [6 ]
Meier, D. S. [1 ,2 ]
Guttmann, C. R. G. [1 ,2 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Ctr Neurol Imaging,Dept Radiol, Boston, MA USA
[2] Harvard Univ, Brigham & Womens Hosp, Sch Med, Ctr Neurol Imaging,Dept Neurol, Boston, MA USA
[3] China Med Univ, Hosp 2, Dept Radiol, Shenyang, Peoples R China
[4] Lahey Clin Fdn, Dept Radiol, Neuroradiol Div, Burlington, MA USA
[5] Brown Univ, Warren Alpert Med Sch, Ctr AIDS Res, Providence, RI USA
[6] Vrije Univ Amsterdam, Med Ctr, Dept Radiol, Amsterdam, Netherlands
关键词
D O I
10.3174/ajnr.A0795
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: Lesion volume change (LVC) assessment is essential in monitoring MS progression. LVC is usually measured by independently segmenting serial MR imaging examinations. Subtraction imaging has been proposed for improved visualization and characterization of lesion change. We compare segmentation of subtraction images (SSEG) with serial single time-point conventional segmentation (CSEG) by assessing the LVC relationship to brain atrophy and disease duration, as well as scan-rescan reproducibility and annual rates of lesion accrual. MATERIALS AND METHODS: Pairs of scans were acquired 1.5 to 4.7 years apart in 21 patients with multiple sclerosis (MS). Scan-rescan MR images were acquired within 30 minutes in 10 patients with MS. LVC was measured with CSEG and SSEG after coregistration and normalization. Coefficient of variation (COV) and Bland-Altman analyses estimated method reproducibility. Spearman rank correlations probed associations between LVC and other measures. RESULTS: Atrophy rate and net LVC were associated for SSEG (R = -0.446; P <.05) but not when using CSEG (R = -0.180; P =.421). Disease duration did not show an association with net lesion volume change per year measured by CSEG (R = -0.360; P =.11) but showed an inverse correlation with SSEG-derived measurements (R = -0.508; P <.05). Scan-rescan COV was lower for SSEG (0.98% +/- 1.55%) than for CSEG (8.64% +/- 9.91 %). CONCLUSION: SSEG unveiled a relationship between T2 LVC and concomitant brain atrophy and demonstrated significantly higher measurement reproducibility. SSEG, a promising tool providing detailed analysis of subtle alterations in lesion size and intensity, may provide critical outcome measures for clinical trials of novel treatments, and may provide further insight into progression patterns in MS.
引用
收藏
页码:340 / 346
页数:7
相关论文
共 50 条
  • [1] Estimating Brain Lesion Volume Change in Multiple Sclerosis by Subtraction of Magnetic Resonance Images
    Horsfield, Mark A.
    Rocca, Maria A.
    Pagani, Elisabetta
    Storelli, Loredana
    Preziosa, Paolo
    Messina, Roberta
    Camesasca, Fabiano
    Copetti, Massimiliano
    Filippi, Massimo
    JOURNAL OF NEUROIMAGING, 2016, 26 (04) : 395 - 402
  • [2] Comparative Multiple Sclerosis Lesion Segmentation in Magnetic Resonance Images
    Isoglu, Selin
    Koca, Elif Isikci
    Duru, Dilek Goksel
    2017 ELECTRIC ELECTRONICS, COMPUTER SCIENCE, BIOMEDICAL ENGINEERINGS' MEETING (EBBT), 2017,
  • [3] Validating Nonlinear Registration to Improve Subtraction Images for Lesion Detection and Quantification in Multiple Sclerosis
    Kotari, Vikas
    Salha, Racha
    Wang, Dana
    Wood, Emily
    Salvetti, Marco
    Ristori, Giovanni
    Tang, Larry
    Bagnato, Francesca
    Ikonomidou, Vasiliki N.
    JOURNAL OF NEUROIMAGING, 2018, 28 (01) : 70 - 78
  • [4] New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation
    Basaran, Berke Doga
    Matthews, Paul M.
    Bai, Wenjia
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [5] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    Neuroradiology, 2015, 57 : 1031 - 1043
  • [6] A toolbox for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    NEURORADIOLOGY, 2015, 57 (10) : 1031 - 1043
  • [7] Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis
    Alfano, B
    Brunetti, A
    Larobina, M
    Quarantelli, M
    Tedeschi, E
    Ciarmiello, A
    Covelli, EM
    Salvatore, M
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2000, 12 (06) : 799 - 807
  • [8] Accurate Segmentation and Registration of Skin Lesion Images to Evaluate Lesion Change
    Navarro, Fulgencio
    Escudero-Vinolo, Marcos
    Bescos, Jesus
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) : 501 - 508
  • [9] A deep learning approach for multiple sclerosis lesion segmentation
    Valverde, S.
    Cabezas, M.
    Roura, E.
    Gonzalez, S.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 531 - 532
  • [10] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    NEUROIMAGE, 2017, 148 : 77 - 102