On duality theory for non-convex semidefinite programming

被引:3
|
作者
Sun, Wenyu [1 ]
Li, Chengjin [1 ,2 ]
Sampaio, Raimundo J. B. [3 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210046, Peoples R China
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
[3] Pontif Catholic Univ Panara PUCPR, Grad Program Prod & Syst Engn PPGEPS, BR-81611970 Curitiba, Parana, Brazil
基金
中国国家自然科学基金;
关键词
Semidefinite programming; Nonconvex semidefinite programming; Duality; Convex-like function; Invex function; SUCCESSIVE LINEARIZATION METHODS;
D O I
10.1007/s10479-011-0861-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, with the help of convex-like function, we discuss the duality theory for nonconvex semidefinite programming. Our contributions are: duality theory for the general nonconvex semidefinite programming when Slater's condition holds; perfect duality for a special case of the nonconvex semidefinite programming for which Slater's condition fails. We point out that the results of Fan (Appl. Math. Lett. 18:1068-1073, 2005) can be regarded as a special case of our result.
引用
收藏
页码:331 / 343
页数:13
相关论文
共 50 条
  • [1] On duality theory for non-convex semidefinite programming
    Wenyu Sun
    Chengjin Li
    Raimundo J. B. Sampaio
    Annals of Operations Research, 2011, 186 : 331 - 343
  • [2] Duality theory of non-convex technologies
    Kuosmanen, T
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2003, 20 (03) : 273 - 304
  • [3] Duality Theory of Non-convex Technologies
    Timo Kuosmanen
    Journal of Productivity Analysis, 2003, 20 : 273 - 304
  • [4] Approximating Non-convex Quadratic Programs by Semidefinite and Copositive Programming
    Povh, Janez
    Rendl, Franz
    KOI 2006: 11TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 35 - +
  • [5] DUALITY IN MIXED INTEGER NON-CONVEX AND NONDIFFERENTIABLE PROGRAMMING
    CHANDRA, S
    CHANDRAMOHAN, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (04): : 205 - 209
  • [6] ELEMENTS OF A THEORY IN NON-CONVEX PROGRAMMING
    BURDET, CA
    NAVAL RESEARCH LOGISTICS, 1977, 24 (01) : 47 - 66
  • [7] NON-CONVEX DUALITY
    EKELAND, I
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1979, MEM (60): : 45 - 55
  • [8] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Buchheim, Christoph
    Wiegele, Angelika
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 435 - 452
  • [9] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Christoph Buchheim
    Angelika Wiegele
    Mathematical Programming, 2013, 141 : 435 - 452
  • [10] A Duality Theory for Non-convex Problems in the Calculus of Variations
    Guy Bouchitté
    Ilaria Fragalà
    Archive for Rational Mechanics and Analysis, 2018, 229 : 361 - 415