On the Domain of Starting Points of Newton's Method Under Center Lipschitz Conditions

被引:4
|
作者
Ezquerro, J. A. [1 ]
Hernandez-Veron, M. A. [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, C Luis de Ulloa S-N, Logrono 26004, Spain
关键词
Nonlinear operator; Newton's method; semilocal convergence; region of accessibility; integral equation; nonlinear system; SEMILOCAL CONVERGENCE; THEOREM;
D O I
10.1007/s00009-015-0596-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When the semilocal convergence of Newton's method is studied in Banach spaces under center Lipschitz conditions, it is usual to choose the point where the Lipschitz condition is centered as the initial point for Newton's method. In this work, we improve this choice looking for a domain of initial points (a convergence domain).
引用
收藏
页码:2287 / 2300
页数:14
相关论文
共 50 条
  • [1] On the Domain of Starting Points of Newton’s Method Under Center Lipschitz Conditions
    J. A. Ezquerro
    M. A. Hernández-Verón
    Mediterranean Journal of Mathematics, 2016, 13 : 2287 - 2300
  • [2] Starting points for Newton's method under a center Lipschitz condition for the second derivative
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 721 - 731
  • [3] Enlarging the domain of starting points for Newton's method under center conditions on the first Frechet-derivative
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    JOURNAL OF COMPLEXITY, 2016, 33 : 89 - 106
  • [4] Extending the domain of starting points for Newton's method under conditions on the second derivative
    Argyros, I. K.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    Magrenan, A. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 1 - 10
  • [5] Newton's method under different Lipschitz conditions
    Gutiérrez, JM
    Hernández, MA
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 368 - 376
  • [6] On the quadratic convergence of Newton's method under center-Lipschitz but not necessarily Lipschitz hypotheses
    Argyros, Ioannis K.
    Hilout, Said
    MATHEMATICA SLOVACA, 2013, 63 (03) : 621 - 638
  • [7] On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions
    Gutierrez, J. M.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 79 - 88
  • [8] Extending the choice of starting points for Newton's method
    Argyros, Ioannis Konstantinos
    Antonio Ezquerro, Jose
    Angel Hernandez-Veron, Miguel
    Kim, Young Ik
    Alberto Magrenan, Angel
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (14) : 8042 - 8050
  • [9] On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions
    Shakhno S.М.
    Journal of Mathematical Sciences, 2016, 212 (1) : 16 - 26
  • [10] Extending the applicability of the Gauss–Newton method under average Lipschitz–type conditions
    Ioannis K. Argyros
    Saïd Hilout
    Numerical Algorithms, 2011, 58 : 23 - 52