On the bounds of the sum of eigenvalues for a Dirichlet problem involving mixed fractional Laplacians
被引:13
|
作者:
Chen, Huyuan
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Chen, Huyuan
[1
]
论文数: 引用数:
h-index:
机构:
Bhakta, Mousomi
[2
]
Hajaiej, Hichem
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Los Angeles, Los Angeles, CA 90032 USAJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Hajaiej, Hichem
[3
]
机构:
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[2] Indian Inst Sci Educ & Res IISER Pune, Dept Math, Pune 411008, Maharashtra, India
[3] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA
Our purpose in this paper is to study of the eigenvalues {lambda(i)(mu)}(i) of the Dirichlet problem (-Delta)(s1)u=lambda((-Delta)(s2)u + mu u) in Omega, u = 0 in R-N \ Omega, where 0 < s(2) < s(1) < 1, N 2(s1) and (-Delta)(s) is the fractional Laplacian operator defined in the principle value sense. We first show the existence of a sequence of eigenvalues, which approaches infinity. Secondly we provide a Berezin-Li-Yau type lower bound for the sum of the eigenvalues of the above problem. Furthermore, using a self-contained and novel method, we establish an upper bound for the sum of eigenvalues of the problem under study. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
Chen, Huyuan
Cheng, Li
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China