A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data

被引:85
|
作者
Zhou, Qingning [1 ]
Hu, Tao [2 ,3 ]
Sun, Jianguo [1 ]
机构
[1] Univ Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USA
[2] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[3] Capital Normal Univ, BCMIIS, Beijing, Peoples R China
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Bernstein polynomial; Efficient estimation; Frailty model; Semiparametric transformation model; Sieve estimation; PROPORTIONAL HAZARDS MODEL; LINEAR TRANSFORMATION MODEL; EFFICIENT ESTIMATION;
D O I
10.1080/01621459.2016.1158113
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Interval-censored failure time data arise in a number of fields and many authors have discussed various issues related to their analysis. However, most of the existing methods are for univariate data and there exists only limited research on bivariate data, especially on regression analysis of bivariate interval-censored data. We present a class of semiparametric transformation models for the problem and for inference, a sieve maximum likelihood approach is developed. The model provides a great flexibility, in particular including the commonly used proportional hazards model as a special case, and in the approach, Bernstein polynomials are employed. The strong consistency and asymptotic normality of the resulting estimators of regression parameters are established and furthermore, the estimators are shown to be asymptotically efficient. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. Supplementary materials for this article are available online.
引用
收藏
页码:664 / 672
页数:9
相关论文
共 50 条
  • [1] Semiparametric sieve maximum likelihood estimation for accelerated hazards model with interval-censored data
    Szabo, Zsolt
    Liu, Xiaoyu
    Xiang, Liming
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 175 - 192
  • [2] Maximum likelihood estimation for semiparametric regression models with interval-censored multistate data
    Gu, Yu
    Zeng, Donglin
    Heiss, Gerardo
    Lin, D. Y.
    BIOMETRIKA, 2024,
  • [3] Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data
    Zeng, Donglin
    Gao, Fei
    Lin, D. Y.
    BIOMETRIKA, 2017, 104 (03) : 505 - 525
  • [4] A SEMIPARAMETRIC MODEL FOR REGRESSION-ANALYSIS OF INTERVAL-CENSORED FAILURE TIME DATA
    FINKELSTEIN, DM
    WOLFE, RA
    BIOMETRICS, 1985, 41 (04) : 933 - 945
  • [5] Semiparametric regression analysis of interval-censored data
    Goetghebeur, E
    Ryan, L
    BIOMETRICS, 2000, 56 (04) : 1139 - 1144
  • [6] Semiparametric regression analysis of clustered interval-censored failure time data with a cured subgroup
    Yang, Dian
    Du, Mingyue
    Sun, Jianguo
    STATISTICS IN MEDICINE, 2021, 40 (30) : 6918 - 6930
  • [7] Regression analysis of interval-censored failure time data
    Sun, JG
    STATISTICS IN MEDICINE, 1997, 16 (05) : 497 - 504
  • [8] Maximum likelihood estimation for semiparametric transformation models with interval-censored data
    Zeng, Donglin
    Mao, Lu
    Lin, D. Y.
    BIOMETRIKA, 2016, 103 (02) : 253 - 271
  • [9] Semiparametric Probit Regression Model with General Interval-Censored Failure Time Data
    Deng, Yi
    Li, Shuwei
    Sun, Liuquan
    Song, Xinyuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (04) : 1413 - 1423
  • [10] Regression analysis of informatively interval-censored failure time data with semiparametric linear transformation model
    Xu, Da
    Zhao, Shishun
    Hu, Tao
    Sun, Jianguo
    JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (03) : 663 - 679