Mixing Monte Carlo and progressive rendering for improved global illumination

被引:5
|
作者
Doidge, Ian C. [1 ]
Jones, Markw. [1 ]
Mora, Benjamin [1 ]
机构
[1] Swansea Univ, Dept Comp Sci, Swansea SA2 8PP, W Glam, Wales
来源
VISUAL COMPUTER | 2012年 / 28卷 / 6-8期
基金
英国工程与自然科学研究理事会;
关键词
Global illumination; Monte Carlo integration; Path tracing; Photon mapping;
D O I
10.1007/s00371-012-0703-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we seek to eliminate the noise caused by caustic paths during progressive Monte Carlo path tracing. We employ a filtering strategy over path space, handling each subspace using specialized derivations of path tracing and progressive photon mapping. Evaluating diffuse paths with path tracing allows the use of sample stratification over both pixels and the image as a whole, whilst sharp detailed caustics are produced using progressive photon mapping. This is an efficient, low noise progressive algorithm with vanishing bias combining the advantages of both Monte Carlo methods, and particle tracing.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 50 条
  • [1] Mixing Monte Carlo and progressive rendering for improved global illumination
    Ian C. Doidge
    Mark W. Jones
    Benjamin Mora
    The Visual Computer, 2012, 28 : 603 - 612
  • [2] Instantaneous foveated preview for progressive Monte Carlo rendering
    Matias K.Koskela
    Kalle V.Immonen
    Timo T.Viitanen
    Pekka O.Jskelinen
    Joonas I.Multanen
    Jarmo H.Takala
    ComputationalVisualMedia, 2018, 4 (03) : 267 - 276
  • [3] Instantaneous foveated preview for progressive Monte Carlo rendering
    Koskela M.K.
    Immonen K.V.
    Viitanen T.T.
    Jääskeläinen P.O.
    Multanen J.I.
    Takala J.H.
    Computational Visual Media, 2018, 4 (3) : 267 - 276
  • [4] Probabilistic illumination-aware filtering for Monte Carlo rendering
    Ian C. Doidge
    Mark W. Jones
    The Visual Computer, 2013, 29 : 707 - 716
  • [5] Probabilistic illumination-aware filtering for Monte Carlo rendering
    Doidge, Ian C.
    Jones, Mark W.
    VISUAL COMPUTER, 2013, 29 (6-8): : 707 - 716
  • [6] A Bayesian Monte Carlo Approach to Global Illumination
    Brouillat, Jonathan
    Bouville, Christian
    Loos, Brad
    Hansen, Charles
    Bouatouch, Kadi
    COMPUTER GRAPHICS FORUM, 2009, 28 (08) : 2315 - 2329
  • [7] A NEW COMPUTATIONAL WAY TO MONTE CARLO GLOBAL ILLUMINATION
    Xu, Qing
    Wang, Wei
    Bao, Shiqiang
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2006, 6 (01) : 23 - 34
  • [8] A new computational way to Monte Carlo global illumination
    Xu, Q
    Liu, CH
    Zhang, S
    FOURTH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND ITS APPLICATIONS IN INDUSTRY, 2004, 5444 : 54 - 59
  • [9] Alternative Monte Carlo Approach for General Global Illumination
    徐庆
    李朋
    徐源
    孙济洲
    TransactionsofTianjinUniversity, 2004, (04) : 275 - 279
  • [10] Progressive Monte Carlo rendering of atmospheric flow features across scales
    Guenther, Tobias
    Kuhn, Alexander
    Hege, Hans-Christian
    Gross, Markus
    Theisel, Holger
    PHYSICAL REVIEW FLUIDS, 2017, 2 (09):