Pseudo-spectral fourier method as applied to finding localized spherical soliton solutions of (3+1)-dimensional Klein-Gordon equations

被引:1
|
作者
Ekomasov, E. G. [1 ]
Salimov, R. K. [1 ]
机构
[1] Bashkir State Univ, Ul Zaki Validi 32, Ufa 450076, Bashkortostan, Russia
关键词
Klein-Gordon equation; pulson; breather; pseudospectral Fourier method;
D O I
10.1134/S0965542516090049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear Klein-Gordon equations with fractional power and logarithmic potentials and with a variation in the phi(4) potential are found for which the existence of long-lived stable spherically symmetric solutions in the form of pulsons is numerically established. Their mean oscillation amplitude and the frequency of the fast oscillation mode do not vary in the course of the numerical simulation. It is shown that the stability of these pulsons is explained by the presence of a potential well.
引用
收藏
页码:1604 / 1610
页数:7
相关论文
共 50 条
  • [1] Pseudo-spectral fourier method as applied to finding localized spherical soliton solutions of (3 + 1)-dimensional Klein–Gordon equations
    E. G. Ekomasov
    R. K. Salimov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 1604 - 1610
  • [2] On the nonlinear (3+1)-dimensional Klein-Gordon equation allowing oscillating localized solutions
    Ekomasov, E. G.
    Salimov, R. K.
    JETP LETTERS, 2015, 102 (02) : 122 - 124
  • [3] A fourth-order exponential wave integrator Fourier pseudo-spectral method for the Klein-Gordon equation
    Ji, Bingquan
    Zhang, Luming
    APPLIED MATHEMATICS LETTERS, 2020, 109
  • [4] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrodinger equations
    Kong LingHua
    Wang Lan
    Jiang ShanShan
    Duan YaLi
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 915 - 932
  • [5] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrödinger equations
    LingHua Kong
    Lan Wang
    ShanShan Jiang
    YaLi Duan
    Science China Mathematics, 2013, 56 : 915 - 932
  • [6] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations
    KONG LingHua
    WANG Lan
    JIANG ShanShan
    DUAN YaLi
    ScienceChina(Mathematics), 2013, 56 (05) : 916 - 933
  • [7] Conservative Fourier pseudo-spectral schemes for general Klein-Gordon-Schrodinger equations
    Wang, Junjie
    Cai, Shanshan
    Ni, Yonggen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (06) : 1339 - 1362
  • [8] A dissipative finite difference Fourier pseudo-spectral method for the Klein-Gordon-Schrodinger equations with damping mechanism
    Ji, Bingquan
    Zhang, Luming
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 376
  • [9] 3-DIMENSIONAL MULTIPLE SOLITON-LIKE SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS
    GIBBON, JD
    FREEMAN, NC
    DAVEY, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05): : L93 - L96
  • [10] Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein-Gordon-Schrodinger equations
    Hong, Qi
    Wang, Yushun
    Wang, Jialing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 468 (02) : 817 - 838