Polynomial algebra for Birkhoff interpolants

被引:12
|
作者
Butcher, John C. [2 ]
Corless, Robert M. [1 ]
Gonzalez-Vega, Laureano [3 ]
Shakoori, Azar [3 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
[2] Univ Auckland, Dept Math, Auckland, New Zealand
[3] Univ Cantabria, Dept Matemat Estadist & Comp, Santander 39071, Spain
关键词
Lagrange; Hermite; and Hermite-Birkhoff interpolation; Contour integrals; Barycentric form; Fixed-denominator rational interpolation; Root-finding; FINITE-DIFFERENCE METHOD; ALGORITHMS; EXPANSION; INVERSION;
D O I
10.1007/s11075-010-9385-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a unifying formulation of a number of related problems which can all be solved using a contour integral formula. Each of these problems requires finding a non-trivial linear combination of possibly some of the values of a function f, and possibly some of its derivatives, at a number of data points. This linear combination is required to have zero value when f is a polynomial of up to a specific degree p. Examples of this type of problem include Lagrange, Hermite and Hermite-Birkhoff interpolation; fixed-denominator rational interpolation; and various numerical quadrature and differentiation formulae. Other applications include the estimation of missing data and root-finding.
引用
收藏
页码:319 / 347
页数:29
相关论文
共 50 条
  • [1] Polynomial algebra for Birkhoff interpolants
    John C. Butcher
    Robert M. Corless
    Laureano Gonzalez-Vega
    Azar Shakoori
    Numerical Algorithms, 2011, 56 : 319 - 347
  • [2] BIRKHOFF AND CATEGORICAL ALGEBRA
    FELSCHER, W
    MATHEMATISCHE ANNALEN, 1969, 180 (01) : 1 - &
  • [3] Convergence of increasingly flat radial basis interpolants to polynomial interpolants
    Lee, Yeon Ju
    Yoon, Gang Joon
    Yoon, Jungho
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) : 537 - 553
  • [4] ON THE GENERAL STRUCTURE OF POLYNOMIAL FUNCTIONAL INTERPOLANTS
    MAKAROV, VL
    KHLOBYSTOV, VV
    DOKLADY AKADEMII NAUK SSSR, 1991, 318 (04): : 805 - 808
  • [5] The Ehrhart polynomial of the Birkhoff polytope
    Beck, M
    Pixton, D
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (04) : 623 - 637
  • [6] The Ehrhart Polynomial of the Birkhoff Polytope
    Matthias Beck
    Dennis Pixton
    Discrete & Computational Geometry, 2003, 30 : 623 - 637
  • [7] Using linear algebra in decomposition of Farkas interpolants
    Martin Blicha
    Antti E. J. Hyvärinen
    Jan Kofroň
    Natasha Sharygina
    International Journal on Software Tools for Technology Transfer, 2022, 24 : 111 - 125
  • [8] Using linear algebra in decomposition of Farkas interpolants
    Blicha, Martin
    Hyvarinen, Antti E. J.
    Kofron, Jan
    Sharygina, Natasha
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2022, 24 (01) : 111 - 125
  • [9] On Polynomial Graded Subalgebras of a Polynomial Algebra
    Jedrzejewicz, Piotr
    ALGEBRA COLLOQUIUM, 2010, 17 : 929 - 936
  • [10] PROPERTIES OF PROJECTIONS OBTAINED BY AVERAGING CERTAIN POLYNOMIAL INTERPOLANTS
    PALAGALLOPRICE, J
    PRICE, TE
    LECTURE NOTES IN MATHEMATICS, 1987, 1287 : 132 - 145