Duality for A∞ weights on the real line

被引:2
|
作者
D'Onofrio, Luigi [1 ]
Popoli, Arturo [2 ]
Schiattarella, Roberta [2 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Studi Econ & Giurid, Via Gen Parisi 13, I-80100 Naples, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
Muckenhoupt weights; Gehring classes; REVERSE HOLDER INEQUALITY; NORM INEQUALITIES; MUCKENHOUPT; INTEGRABILITY;
D O I
10.4171/RLM/735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the same bounds on G(q)-constants and A(p)-constants, the optimal exponents for sharp inclusions between Gehring G(q)-class of weights and Muckenhoupt A(p)-class (1 < p, q < infinity) are Holder conjugate, if p and q are conjugate. This is a consequence of a representation theorem of A(infinity) weights in terms of W-1,W-r-biSobolev maps and a duality result between G(q) and A(p) classes in dimension one. We prove also that sharp a priori bounds on constants correspond under the Holder conjugate mapping f(t) = t/t-1.
引用
收藏
页码:287 / 308
页数:22
相关论文
共 50 条
  • [1] Zagier duality for real weights
    Lee, Youngmin
    Lim, Subong
    ACTA ARITHMETICA, 2023, 207 (03) : 235 - 250
  • [2] Real weights, bound states and duality orbits
    Marrani, Alessio
    Riccioni, Fabio
    Romano, Luca
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [3] THE STRUCTURE OF INCREASING WEIGHTS ON THE REAL LINE
    Cruz-Uribe, David
    Forzani, Liliana
    Maldonado, Diego
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (03): : 951 - 983
  • [4] A duality principle in weighted Sobolev spaces on the real line
    Eveson, Simon P.
    Stepanov, Vladimir D.
    Ushakova, Elena P.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 877 - 897
  • [5] Shape preserving approximation on the real line with exponential weights
    Maizlish, Oleksandr
    JOURNAL OF APPROXIMATION THEORY, 2009, 157 (02) : 127 - 133
  • [6] Sharp interactions among A(infinity)-weights on the real line
    Popoli, Arturo
    Sbordone, Carlo
    Zecca, Gabriella
    RICERCHE DI MATEMATICA, 2015, 64 (02) : 289 - 301
  • [7] Approximation of the Hilbert Transform on the Real Line Using Freud Weights
    Notarangelo, Incoronata
    APPROXIMATION AND COMPUTATION: IN HONOR OF GRADIMIR V. MILOVANOVIC, 2011, 42 : 233 - 252
  • [8] Generalized rank weights: A duality statement
    Ducoat, Jerome
    TOPICS IN FINITE FIELDS, 2015, 632 : 101 - 109
  • [9] Polynomial Approximation and Interpolation on the Real Line with Respect to General Classes of Weights
    Horváth Á.
    Szabados J.
    Results in Mathematics, 1998, 34 (1-2) : 120 - 131
  • [10] Fast computation of Gauss quadrature nodes and weights on the whole real line
    Townsend, Alex
    Trogdon, Thomas
    Olver, Sheehan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) : 337 - 358