Energy methods for fractional Navier-Stokes equations

被引:16
|
作者
Zhou, Yong [1 ,2 ]
Peng, Li [1 ]
Ahmad, Bashir [2 ]
Alsaedi, Ahmed [2 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Caputo fractional derivative; Energy methods; Approximate solutions; MILD SOLUTIONS; EVOLUTION INCLUSIONS; MORREY SPACES; EXISTENCE;
D O I
10.1016/j.chaos.2017.03.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we make use of energy methods to study the Navier-Stokes equations with time-fractional derivative. Such equations can be used to simulate anomalous diffusion in fractal media. In the first step, we construct a regularized equation by using a smoothing process to transform unbounded differential operators into bounded operators and then obtain the approximate solutions. The second part describes a procedure to take a limit in the approximation program to present a global solution to the objective equation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [1] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [2] A note on energy equality for the fractional Navier-Stokes equations
    Wu, Fan
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (01) : 201 - 208
  • [3] MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS
    Li, Xiaocui
    You, Xu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (01): : 130 - 146
  • [4] AN IMPROVEMENT OF FRACTIONAL STEP METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    LE, H
    MOIN, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (02) : 369 - 379
  • [5] Analysis of fractional Navier-Stokes equations
    Jafari, Hossein
    Zair, Muslim Yusif
    Jassim, Hassan Kamil
    HEAT TRANSFER, 2023, 52 (03) : 2859 - 2877
  • [6] METHODS OF SOLVING NAVIER-STOKES EQUATIONS
    KOBELKOV, GM
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (04): : 843 - 846
  • [7] Adaptive methods for Navier-Stokes equations
    Karamyshev, V
    Kovenya, V
    Sleptsov, A
    COMPUTATIONAL FLUID DYNAMICS '96, 1996, : 301 - 307
  • [8] Fractional Optimal Control of Navier-Stokes Equations
    Hyder, Abd-Allah
    El-Badawy, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (02): : 859 - 870
  • [9] NAVIER-STOKES EQUATIONS, TURBULENCE, AND FRACTIONAL CALCULUS
    MORITZ, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 54 - 54
  • [10] On the time-fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 874 - 891