CRISPR/Cas9 engineering of a KIM-1 reporter human proximal tubule cell linee

被引:5
|
作者
Veach, Ruth Ann [1 ,2 ]
Wilson, Matthew H. [1 ,2 ,3 ]
机构
[1] US Dept Vet Affairs, Nashville, TN 37228 USA
[2] Vanderbilt Univ, Med Ctr, Div & Nephrol & Hypertens, Dept Med, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Pharmacol, 221 Kirkland Hall, Nashville, TN 37235 USA
来源
PLOS ONE | 2018年 / 13卷 / 09期
基金
美国国家卫生研究院;
关键词
ACUTE KIDNEY INJURY; MOLECULE-1; KIM-1; EPITHELIAL-CELLS; BIOMARKERS; NUCLEASES;
D O I
10.1371/journal.pone.0204487
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We used the CRISPR/Cas9 system to knock-in reporter transgenes at the kidney injury molecule-1 (KIM-1) locus and isolated human proximal tubule cell (HK-2) clones. PCR verified targeted knock-in of the luciferase and eGFP reporter at the KIM-1 locus. HK-2-KIM-1 reporter cells responded to various stimuli including hypoxia, cisplatin, and high glucose, indicative of upregulation of KIM-1 expression. We attempted using CRISPR/Cas9 to also engineer the KIM-1 reporter in telomerase-immortalized human RPTEC cells. However, these cells demonstrated an inability to undergo homologous recombination at the target locus. KIM-1-reporter human proximal tubular cells could be valuable tools in drug discovery for molecules inhibiting kidney injury. Additionally, our gene targeting strategy could be used in other cell lines to evaluate the biology of KIM-1 in vitro or in vivo.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Protocol for the Generation of Human Pluripotent Reporter Cell Lines Using CRISPR/Cas9
    Zhong, Aaron
    Li, Mu
    Zhou, Ting
    STAR PROTOCOLS, 2020, 1 (02):
  • [2] CRISPR/Cas9 for Human Genome Engineering and Disease Research
    Xiong, Xin
    Chen, Meng
    Lim, Wendell A.
    Zhao, Dehua
    Qi, Lei S.
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 17, 2016, 17 : 131 - 154
  • [3] CRISPR/Cas9 advances engineering of microbial cell factories
    Jakociunas, Tadas
    Jensen, Michael K.
    Keasling, Jay D.
    METABOLIC ENGINEERING, 2016, 34 : 44 - 59
  • [4] Chromosome engineering in zygotes with CRISPR/Cas9
    Boroviak, Katharina
    Doe, Brendan
    Banerjee, Ruby
    Yang, Fengtang
    Bradley, Allan
    GENESIS, 2016, 54 (02) : 78 - 85
  • [5] Improving the efficiency of Cas9/CRISPR genome engineering by optimizing Cas9 delivery
    Pelczar, Pawel
    Oller, Heide
    Kornete, Mara
    Schreiner, Dietmar
    Hermann, Mario
    Jeker, Lukas
    TRANSGENIC RESEARCH, 2016, 25 (02) : 255 - 256
  • [6] CRISPR/CAS9 MEDIATED GENOME ENGINEERING OF HUMAN MESENCHYMAL STEM
    van den Akker, G.
    van Beuningen, H.
    Davidson, E. Blaney
    van der Kraan, P.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S231 - S231
  • [7] Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9
    Chen, Yuejun
    Cao, Jingyuan
    Xiong, Man
    Petersen, Andrew J.
    Dong, Yi
    Tao, Yunlong
    Huang, Cindy Tzu-Ling
    Du, Zhongwei
    Zhang, Su-Chun
    CELL STEM CELL, 2015, 17 (02) : 233 - 244
  • [8] Engineering the Caenorhabditis elegans genome with CRISPR/Cas9
    Waaijers, Selma
    Boxem, Mike
    METHODS, 2014, 68 (03) : 381 - 388
  • [9] CRISPR/Cas9 mediated genome engineering in Drosophila
    Bassett, Andrew
    Liu, Ji-Long
    METHODS, 2014, 69 (02) : 128 - 136
  • [10] Engineering of actinomycetes using CRISPR/Cas9 technologies
    Weber, T.
    Tong, Y.
    Blin, K.
    Lee, S. Y.
    PLANTA MEDICA, 2016, 82