Uncertainty Quantification for the BGK Model of the Boltzmann Equation Using Multilevel Variance Reduced Monte Carlo Methods

被引:7
|
作者
Hu, Jingwei [1 ]
Pareschi, Lorenzo [2 ]
Wang, Yubo [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Ferrara, Dept Math & Comp Sci, Via Machiavelli 30, I-44121 Ferrara, Italy
来源
关键词
kinetic equation; BGK model; multilevel Monte Carlo method; control variate method; uncertainty quantification; random inputs; IMPLICIT-EXPLICIT SCHEMES; CONSERVATION-LAWS; PROPAGATION; SYSTEMS;
D O I
10.1137/20M1331846
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a control variate multilevel Monte Carlo method for the kinetic Bhatnagar-Gross-Krook model of the Boltzmann equation subject to random inputs. The method combines a multilevel Monte Carlo technique with the computation of the optimal control variate multipliers derived from local or global variance minimization problems. Consistency and convergence analysis for the method equipped with a second-order positivity-preserving and asymptotic-preserving scheme in space and time is also performed. Various numerical examples confirm that the optimized multilevel Monte Carlo method outperforms the classical multilevel Monte Carlo method especially for problems with discontinuities.
引用
收藏
页码:650 / 680
页数:31
相关论文
共 50 条
  • [1] FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (06) : 501 - 514
  • [2] Variance reduction for Monte Carlo solutions of the Boltzmann equation
    Baker, LL
    Hadjiconstantinou, NG
    PHYSICS OF FLUIDS, 2005, 17 (05) : 1 - 4
  • [3] Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo
    Mohring, Jan
    Milk, Rene
    Ngo, Adrian
    Klein, Ole
    Iliev, Oleg
    Ohlberger, Mario
    Bastian, Peter
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 145 - 152
  • [4] Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method
    Logashenko, Dmitry
    Litvinenko, Alexander
    Tempone, Raul
    Vasilyeva, Ekaterina
    Wittum, Gabriel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [5] Multilevel Monte Carlo FDTD Method for Uncertainty Quantification
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (10): : 2030 - 2034
  • [6] Variance reduced Monte Carlo methods for PDEs
    Newton, N.J.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 3):
  • [7] Multilevel asymptotic-preserving Monte Carlo for kinetic-diffusive particle simulations of the Boltzmann-BGK equation
    Mortier, Bert
    Robbe, Pieterjan
    Baelmans, Martine
    Samaey, Giovanni
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 450
  • [8] MCBTE: A variance-reduced Monte Carlo solution of the linearized Boltzmann transport equation for phonons
    Pathak, Abhishek
    Pawnday, Avinash
    Roy, Aditya Prasad
    Aref, Amjad J.
    Dargush, Gary F.
    Bansal, Dipanshu
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 265
  • [9] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [10] Time relaxed Monte Carlo methods for the Boltzmann equation
    Pareschi, Lorenzo
    Russo, Giovanni
    SIAM Journal on Scientific Computing, 2002, 23 (04): : 1253 - 1273