ESTIMATIONS OF HERON MEANS FOR POSITIVE OPERATORS

被引:7
|
作者
Fujii, Masatoshi [1 ]
Furuichi, Shigeru [2 ]
Nakamoto, Ritsuo [3 ]
机构
[1] Osaka Kyoiku Univ, Dept Math, Osaka 5828582, Japan
[2] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
[3] Daihara Cho, Hitachi, Ibaraki 3160021, Japan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2016年 / 10卷 / 01期
关键词
Arithmetic mean; geometric mean; arithmetic-geometric mean inequality and Heron mean;
D O I
10.7153/jmi-10-02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The arithmetic-geometric mean inequality induces the path of Heron means through these two means by H-r(mu) (A,B) = r(A#B-mu)+(1-r)(A del B-mu) for each mu is an element of [0,1], r is an element of R and positive operators A, B on a Hilbert space. In this note, we estimate H-r(mu) (A, B) by the harmonic mean. As an application of this method, we refine the arithmetic-geometric mean inequality under the assumption of the strict order A-B >= m > 0.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条