Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

被引:26
|
作者
Yang, Junliang [1 ]
Yim, Sanggyu [2 ]
Jones, Tim S. [3 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Inst Super Microstruct & Ultrafast Proc Adv Mat, Changsha 410083, Hunan, Peoples R China
[2] Kookmin Univ, Dept Chem, Seoul 136702, South Korea
[3] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
INTERMOLECULAR INTERACTIONS; SCALING BEHAVIOR; TRANSISTORS;
D O I
10.1038/srep09441
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D <= 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents alpha = 0.71 +/- 0.12, beta = 0.36 +/- 0.03, and 1/z = 0.39 +/- 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth
    Junliang Yang
    Sanggyu Yim
    Tim S. Jones
    Scientific Reports, 5
  • [2] Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors
    Virkar, Ajay A.
    Mannsfeld, Stefan
    Bao, Zhenan
    Stingelin, Natalie
    ADVANCED MATERIALS, 2010, 22 (34) : 3857 - 3875
  • [3] Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene) -: art. no. 016104
    Dürr, AC
    Schreiber, F
    Ritley, KA
    Kruppa, V
    Krug, J
    Dosch, H
    Struth, B
    PHYSICAL REVIEW LETTERS, 2003, 90 (01)
  • [4] Morphology and molecular orientation of thin-film bis(triisopropylsilylethynyl) pentacene
    Chen, Jihua
    Martin, David C.
    Anthony, John E.
    JOURNAL OF MATERIALS RESEARCH, 2007, 22 (06) : 1701 - 1709
  • [5] Morphology and molecular orientation of thin-film bis(triisopropylsilylethynyl) pentacene
    Jihua Chen
    David C. Martin
    John E. Anthony
    Journal of Materials Research, 2007, 22 : 1701 - 1709
  • [6] Molecular orientation and thermal stability of thin-film organic semiconductors
    Yang, Han-Nan
    He, Shou-Jie
    Zhang, Tao
    Man, Jia-Xiu
    Zhao, Yongbiao
    Jiang, Nan
    Wang, Deng-Ke
    Lu, Zheng-Hong
    ORGANIC ELECTRONICS, 2021, 88 (88)
  • [7] The ordered thin-film growth of organic semiconductor on Ag(110)
    Huang, H
    Zhang, HJ
    Botters, B
    Chen, Q
    Mao, HY
    Lu, B
    Li, HY
    He, PM
    Bao, SN
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05):
  • [8] MOCVD GROWTH OF SEMICONDUCTOR THIN-FILM
    MORI, Y
    DENKI KAGAKU, 1984, 52 (07): : 407 - 411
  • [9] Thermal Properties, Molecular Structure, and Thin-Film Organic Semiconductor Crystallization
    Dull, Jordan T.
    Wang, Yucheng
    Johnson, Holly
    Shayegan, Komron
    Shapiro, Ellie
    Priestley, Rodney D.
    Geerts, Yves H.
    Rand, Barry P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (49): : 27213 - 27221
  • [10] Order-Disorder Transition in the Molecular Orientation during Initial Growth of Organic Thin Film
    Kwon, Soonnam
    Kim, Tae Gun
    Choi, Won Kook
    Kang, Sang Ook
    Kim, Jeong Won
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (06) : 1896 - 1901