Channel Gain Map Tracking via Distributed Kriging

被引:85
|
作者
Dall'Anese, Emiliano [1 ]
Kim, Seung-Jun [1 ]
Giannakis, Georgios B. [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Channel tracking; cognitive radio; distributed algorithms; kriging; shadow fading; WIRELESS NETWORKS; SPECTRUM ACCESS; SYSTEMS;
D O I
10.1109/TVT.2011.2113195
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A collaborative algorithm is developed to estimate the channel gains of wireless links in a geographical area. The spatiotemporal evolution of shadow fading is characterized by judiciously extending an experimentally verified spatial-loss field model. Kriged Kalman filtering (KKF), which is a tool with widely appreciated merits in spatial statistics and geosciences, is adopted and implemented in a distributed fashion to track the time-varying shadowing field using a network of radiometers. The novel distributed KKF requires only local message passing yet achieves a global view of the radio frequency environment through consensus iterations. Numerical tests demonstrate superior tracking accuracy of the collaborative algorithm compared with its noncollaborative counterpart. Furthermore, the efficacy of the global channel gain knowledge obtained is showcased in the context of cognitive radio resource allocation.
引用
收藏
页码:1205 / 1211
页数:7
相关论文
共 50 条
  • [1] Nonlinear SpatioTemporal Channel Gain Map Tracking in Mobile Cooperative Networks
    Kalogerias, Dionysios S.
    Petropulu, Athina P.
    2015 IEEE 16TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2015, : 660 - 664
  • [2] Enhanced Gradient Tracking Algorithms for Distributed Quadratic Optimization via Sparse Gain Design
    Carnevale, Guido
    Bin, Michelangelo
    Notarnicola, Ivano
    Marconi, Lorenzo
    Notarstefano, Giuseppe
    IFAC PAPERSONLINE, 2020, 53 (02): : 2696 - 2701
  • [3] Visual tracking via Boolean map representations
    Zhang, Kaihua
    Liu, Qingshan
    Yang, Jian
    Yang, Ming-Hsuan
    PATTERN RECOGNITION, 2018, 81 : 147 - 160
  • [4] Illumination gain estimation and tracking in a distributed lighting control system
    Caicedo, David
    Pandharipande, Ashish
    Willems, Frans M. J.
    2014 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2014, : 1650 - 1655
  • [5] Improving object tracking through distributed exploration of an information map
    Neveln, Izaak D.
    Miller, Lauren M.
    MacIver, Malcolm A.
    Murphey, Todd D.
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 3441 - 3447
  • [6] Channel Gain Cartography via Mixture of Experts
    Lopez-Ramos, Luis M.
    Teganya, Yves
    Beferull-Lozano, Baltasar
    Kim, Seung-Jun
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [7] Visual Tracking via Discriminative Sparse Similarity Map
    Zhuang, Bohan
    Lu, Huchuan
    Xiao, Ziyang
    Wang, Dong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1872 - 1881
  • [8] Human Motion Tracking via the Local Dissimilarity Map
    Mrabti, Wafae
    Bellach, Benaissa
    Ech-Choudany, Youssef
    Morain-Nicolier, Frederic
    Tairi, Hamid
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 162 - 173
  • [9] Performance Evaluation of SIMO Least Squares Channel Tracking on Rician Distributed Channel
    Zakia, Irma
    Proceeding of 2015 1st International Conference on Wireless and Telematics (ICWT), 2015,
  • [10] Human Motion Tracking via the Local Dissimilarity Map
    Benaissa Wafae Mrabti
    Youssef Bellach
    Frédéric Ech-Choudany
    Hamid Morain-Nicolier
    Pattern Recognition and Image Analysis, 2022, 32 : 162 - 173