Aspects Extraction for Aspect Level Opinion Analysis Based on Deep CNN

被引:2
|
作者
Pour, Ali Alemi Matin [1 ]
Jalili, Saeed [1 ]
机构
[1] Tarbiat Modares Univ, Comp Engn Dept, Tehran, Iran
关键词
aspect extraction; opinion analysis; deep CNN; natural language processing; deep learning; neural network;
D O I
10.1109/CSICC52343.2021.9420630
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Extracting aspect term is essential for aspect level sentiment analysis; Sentiment analysis collects and extracts the opinions expressed in social media and websites' comments and then analyzes them, helping users and stakeholders understand public views on the issues raised better and more quickly. Aspect-level sentiment analysis provides more detailed information, which is very beneficial for use in many various domains. In this paper, the significant contribution is to provide a data preprocessing method and a deep convolutional neural network (CNN) to label each word in opinionated sentences as an aspect or non-aspect word. The proposed method extracts the terms of the aspect that can be used in analyzing the sentiment of the expressed aspect terms in the comments and opinions. The experimental results of the proposed method performed on the SemEval-2014 dataset show that it performs better than other prominent methods such as deep CNN. The proposed data preprocessing method with the deep CNN network can improve extraction of aspect terms according to F-measure by at least 1.05% and 0.95% on restaurant and laptop domains.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep Weighted MaxSAT for Aspect-based Opinion Extraction
    Wu, Meixi
    Wang, Wenya
    Pan, Sinno Jialin
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 5618 - 5628
  • [2] ALBERTC-CNN Based Aspect Level Sentiment Analysis
    Ye, Xingxin
    Xu, Yang
    Luo, Mengshi
    IEEE ACCESS, 2021, 9 : 94748 - 94755
  • [3] Aspect extraction for opinion mining with a deep convolutional neural network
    Poria, Soujanya
    Cambria, Erik
    Gelbukh, Alexander
    KNOWLEDGE-BASED SYSTEMS, 2016, 108 : 42 - 49
  • [4] Comparative Study of CNN and LSTM based Attention Neural Networks for Aspect-Level Opinion Mining
    Quan, Wei
    Chen, Zheng
    Gao, Jianliang
    Hu, Xiaohua Tony
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2141 - 2150
  • [5] Aspect Level Sentiment Analysis Based on Deep Learning and Ontologies
    Belguith M.
    Aloulou C.
    Gargouri B.
    SN Computer Science, 5 (1)
  • [6] Aspect-Level Sentiment Analysis Based on Deep Learning
    Zhang, Mengqi
    Chai, Jiazhao
    Cao, Jianxiang
    Ji, Jialing
    Yi, Tong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 3743 - 3762
  • [7] Opinion Triplet Extraction for Aspect-Based Sentiment Analysis Using Co-Extraction Approach
    Genadi, Rifo Ahmad
    Khodra, Masayu Leylia
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2022, 21 (02): : 255 - 277
  • [8] Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions
    Cai, Hongjie
    Xia, Rui
    Yu, Jianfei
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 340 - 350
  • [9] Improving aspect-level sentiment analysis with aspect extraction
    Majumder, Navonil
    Bhardwaj, Rishabh
    Poria, Soujanya
    Gelbukh, Alexander
    Hussain, Amir
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 8333 - 8343
  • [10] Improving aspect-level sentiment analysis with aspect extraction
    Navonil Majumder
    Rishabh Bhardwaj
    Soujanya Poria
    Alexander Gelbukh
    Amir Hussain
    Neural Computing and Applications, 2022, 34 : 8333 - 8343