JONSSON MODULES OVER NOETHERIAN RINGS

被引:8
|
作者
Oman, Greg [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Cardinality; Discrete valuation ring; Generalized continuum hypothesis; Jonsson module; Noetherian ring; COMMUTATIVE RING; PROPER SUBMODULES; CARDINALITY;
D O I
10.1080/00927870902936943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity, and let M be an infinite unitary R-module. M is said to be a Jonsson module provided every proper submodule of M has strictly smaller cardinality than M. Utilizing earlier results of the author [11] as well as results of GilmerlHeinzer, Weakley, and HeinzerlLantz [8, 10, 14], we study Jonsson modules over Noetherian rings. After a brief introduction, we classify the countable Jonsson modules over an arbitrary ring up to quotient equivalence. We then give a complete description of the Jonsson modules over a 1-dimensional Noetherian ring, extending W. R. Scott's classification over Z. We show that these results may be extended to Jonsson modules over an arbitrary Noetherian ring if one assumes The Generalized Continuum Hypothesis. Finally, we close with a list of open problems.
引用
收藏
页码:3489 / 3498
页数:10
相关论文
共 50 条
  • [1] ON THE GRADE OF MODULES OVER NOETHERIAN RINGS
    Huang, Zhaoyong
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3616 - 3631
  • [2] Embedding of modules over Noetherian rings
    Huang, Chonghui
    Xu, Zhenghua
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (05): : 63 - 68
  • [3] MONOLITHIC MODULES OVER NOETHERIAN RINGS
    Carvalho, Paula A. A. B.
    Musson, Ian M.
    GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 683 - 692
  • [4] MODULES OVER HEREDITARY NOETHERIAN PRIME RINGS
    SINGH, S
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (04): : 867 - 883
  • [5] LINEARLY COMPACT MODULES OVER NOETHERIAN RINGS
    FAKHRUDD.SM
    JOURNAL OF ALGEBRA, 1973, 24 (03) : 544 - 550
  • [6] MODULES OVER HEREDITARY NOETHERIAN PRIME RINGS
    SINGH, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (03): : A389 - A389
  • [7] FINITELY EMBEDDED MODULES OVER NOETHERIAN RINGS
    GINN, SM
    MOSS, PB
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (04) : 709 - 710
  • [8] FI-modules over Noetherian rings
    Church, Thomas
    Ellenberg, Jordan S.
    Farb, Benson
    Nagpal, Rohit
    GEOMETRY & TOPOLOGY, 2014, 18 (05) : 2951 - 2984
  • [9] Modules over hereditary Noetherian prime rings
    Tuganbaev, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (02) : 363 - 364
  • [10] FIm-modules over Noetherian rings
    Li, Liping
    Yu, Nina
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (08) : 3436 - 3460