Unoriented WZW models and holonomy of bundle gerbes

被引:41
|
作者
Schreiber, Urs [1 ]
Schweigert, Christoph
Waldorf, Konrad
机构
[1] Univ Hamburg, Fachbereich Math, Schwerpunkt Algebra & Zahlentheorie, D-20146 Hamburg, Germany
关键词
Line Bundle; Local Data; Target Space; Fundamental Domain; Local Section;
D O I
10.1007/s00220-007-0271-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wess-Zumino term in two-dimensional conformal field theory is best understood as a surface holonomy of a bundle gerbe. We define additional structure for a bundle gerbe that allows to extend the notion of surface holonomy to unoriented surfaces. This provides a candidate for the Wess-Zumino term for WZW models on unoriented surfaces. Our ansatz reproduces some results known from the algebraic approach to WZW models. manche meinen lechts und rinks kann man nicht velwechsern werch ein illtum Ernst Jandl [Jan95].
引用
收藏
页码:31 / 64
页数:34
相关论文
共 50 条
  • [1] Unoriented WZW Models and Holonomy of Bundle Gerbes
    Urs Schreiber
    Christoph Schweigert
    Konrad Waldorf
    Communications in Mathematical Physics, 2007, 274 : 31 - 64
  • [2] Gerbes in unoriented WZW Models
    Department Mathematik, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany
    Proc. Summer Sch. Mod. Math. Phys., MPHYS, (423-430):
  • [3] Bundle gerbes and surface holonomy
    Fuchs, Jurgen
    Nikolaus, Thomas
    Schweigert, Christoph
    Waldorf, Konrad
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 167 - +
  • [4] WZW branes and gerbes
    Gawedzki, K
    Reis, N
    REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (12) : 1281 - 1334
  • [5] Abelian and non-abelian branes in WZW models and gerbes
    Gawedzki, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) : 23 - 73
  • [6] Abelian and Non-Abelian Branes in WZW Models and Gerbes
    Krzysztof Gawedzki
    Communications in Mathematical Physics, 2005, 258 : 23 - 73
  • [7] Bundle gerbes for orientifold sigma models
    Gawedzki, Krzysztof
    Suszek, Rafal R.
    Waldorf, Konrad
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 15 (03) : 621 - 687
  • [8] Holonomy for gerbes over orbifolds
    Lupercio, Ernesto
    Uribe, Bernardo
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1534 - 1560
  • [9] Bundle Gerbes
    Murray, MK
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 403 - 416
  • [10] GERBES, HOLONOMY FORMS AND REAL STRUCTURES
    Wang, Shuguang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 109 - 130