Declarative Probabilistic Programming with Datalog

被引:20
|
作者
Barany, Vince [1 ,4 ]
Ten Cate, Balder [1 ,4 ]
Kimelfeld, Benny [2 ]
Olteanu, Dan [3 ]
Vagena, Zografoula [1 ,5 ]
机构
[1] LogicBlox Inc, Atlanta, GA 30309 USA
[2] Technion Israel Inst Technol, Fac Comp Sci, Taub 703, IL-32000 Haifa, Israel
[3] Univ Oxford, Wolfson Bldg,Pk Rd, Oxford OX1 3QD, England
[4] Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
[5] Infor Inc, 1349 West Peachtree St, Atlanta, GA 30309 USA
来源
ACM TRANSACTIONS ON DATABASE SYSTEMS | 2017年 / 42卷 / 04期
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
Chase; Datalog; declarative; probability measure space; probabilistic programming; LOGIC; INFERENCE; NETWORKS; LANGUAGE; QUERIES;
D O I
10.1145/3132700
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic programming languages are used for developing statistical models. They typically consist of two components: a specification of a stochastic process (the prior) and a specification of observations that restrict the probability space to a conditional subspace (the posterior). Use cases of such formalisms include the development of algorithms in machine learning and artificial intelligence. In this article, we establish a probabilistic-programming extension of Datalog that, on the one hand, allows for defining a rich family of statistical models, and on the other hand retains the fundamental properties of declarativity. Our proposed extension provides mechanisms to include common numerical probability functions; in particular, conclusions of rules may contain values drawn from such functions. The semantics of a program is a probability distribution over the possible outcomes of the input database with respect to the program. Observations are naturally incorporated by means of integrity constraints over the extensional and intensional relations. The resulting semantics is robust under different chases and invariant to rewritings that preserve logical equivalence.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Declarative Probabilistic Programming
    Aref, Molham
    KI 2015: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2015, 9324 : XIII - XIII
  • [2] Extending Datalog with Declarative Updates
    Mengchi Liu
    Journal of Intelligent Information Systems, 2003, 20 : 107 - 129
  • [3] A DECLARATIVE DEBUGGING ENVIRONMENT FOR DATALOG
    RUSSO, F
    SANCASSANI, M
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1992, 592 : 433 - 441
  • [4] Extending datalog with declarative updates
    Liu, MC
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2003, 20 (02) : 107 - 129
  • [5] Declarative probabilistic logic programming in discrete-continuous domains
    Dos Martires, Pedro Zuidberg
    De Raedt, Luc
    Kimmig, Angelika
    ARTIFICIAL INTELLIGENCE, 2024, 337
  • [6] A Functional Account of Probabilistic Programming with Possible Worlds Declarative Pearl
    van den Berg, Birthe
    Schrijvers, Tom
    FUNCTIONAL AND LOGIC PROGRAMMING, FLOPS 2022, 2022, 13215 : 186 - 204
  • [8] A Theoretical Framework for the Declarative Debugging of Datalog Programs
    Caballero, R.
    Garcia-Ruiz, Y.
    Saenz-Perez, F.
    SEMANTICS IN DATA AND KNOWLEDGE BASES, 2008, 4925 : 143 - +
  • [9] Bean Machine: A Declarative Probabilistic Programming Language For Efficient Programmable Inference
    Tehrani, Nazanin
    Arora, Nimar S.
    Li, Yucen Lily
    Shah, Kinjal Divesh
    Noursi, David
    Tingley, Michael
    Torabi, Narjes
    Masouleh, Sepehr
    Lippert, Eric
    Meijer, Erik
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 485 - 496
  • [10] Complexity Results for Probabilistic Datalog
    Ceylan, Ismail Ilkan
    Lukasiewicz, Thomas
    Penaloza, Rafael
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1414 - 1422