A note on the time-dependent Ginzburg-Landau model for superconductivity in Rn

被引:3
|
作者
Fan, Jishan [1 ]
Zhou, Yong [2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
Ginzburg-Landau; Smooth solutions; Regularity criterion; WEAK SOLUTIONS; EQUATIONS;
D O I
10.1016/j.aml.2020.106208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we prove the global well-posedness of strong solutions to the time-dependent Ginzburg Landau model for superconductivity in Ifln with 5 <= n <= 17. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A regularity criterion to the time-dependent Ginzburg-Landau model for superconductivity in Rn
    Fan, Jishan
    Zhou, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [2] TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS OF SUPERCONDUCTIVITY
    TANG, Q
    WANG, S
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (3-4) : 139 - 166
  • [3] Cauchy problem for the time-dependent Ginzburg-Landau model of superconductivity
    Rodriguez-Bernal, A
    Wang, B
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 1383 - 1404
  • [4] Weak-very weak uniqueness to the time-dependent Ginzburg-Landau model for superconductivity in Rn
    Gao, Hongjun
    Fan, Jishan
    Nakamura, Gen
    RESULTS IN APPLIED MATHEMATICS, 2021, 12
  • [5] Nucleation of vortices with a temperature and time-dependent Ginzburg-Landau model of superconductivity
    Coskun, E
    Cakir, Z
    Takac, P
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 : 111 - 127
  • [6] Asymptotic behaviour of time-dependent Ginzburg-Landau equations of superconductivity
    Rodriguez-Bernal, A
    Wang, BX
    Willie, R
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (18) : 1647 - 1669
  • [7] Time-dependent Ginzburg-Landau approach and its application to superconductivity
    Zagrodzinski, JA
    Nikiciuk, T
    Abal'osheva, IS
    Lewandowski, SJ
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2003, 16 (08): : 936 - 940
  • [8] Implicit integration of the time-dependent Ginzburg-Landau equations of superconductivity
    Gunter, DO
    Kaper, HG
    Leaf, GK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06): : 1943 - 1958
  • [9] Lp solutions to the time-dependent Ginzburg-Landau equations of superconductivity
    Wang, Shouhong
    Zhan, Mei-Qin
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 36 (06): : 661 - 677
  • [10] UNIFORM WELL-POSEDNESS FOR A TIME-DEPENDENT GINZBURG-LANDAU MODEL IN SUPERCONDUCTIVITY
    Fan, Jishan
    Samet, Bessem
    Zhou, Yong
    OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (02) : 269 - 276