Internal dynamics and activated processes in soft-glassy materials

被引:19
|
作者
Benzi, R. [1 ,2 ]
Sbragaglia, M. [1 ,2 ]
Scagliarini, A. [1 ,2 ]
Perlekar, P. [4 ]
Bernaschi, M. [3 ]
Succi, S. [3 ]
Toschi, F. [3 ,5 ,6 ,7 ]
机构
[1] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy
[3] Ist Applicaz Calcolo CNR, I-00185 Rome, Italy
[4] TIFR Ctr Interdisciplinary Sci, Hyderabad 500075, Andhra Pradesh, India
[5] Eindhoven Univ Technol, Dept Phys, NL-5600 MB Eindhoven, Netherlands
[6] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[7] Eindhoven Univ Technol, JM Burgersctr, NL-5600 MB Eindhoven, Netherlands
基金
欧洲研究理事会;
关键词
RHEOLOGY; MODEL; RELAXATION; FORCES; FLOWS;
D O I
10.1039/c4sm02341b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plastic rearrangements play a crucial role in the characterization of soft-glassy materials, such as emulsions and foams. Based on numerical simulations of soft-glassy systems, we study the dynamics of plastic rearrangements at the hydrodynamic scales where thermal fluctuations can be neglected. Plastic rearrangements require an energy input, which can be either provided by external sources, or made available through time evolution in the coarsening dynamics, in which the total interfacial area decreases as a consequence of the slow evolution of the dispersed phase from smaller to large droplets/bubbles. We first demonstrate that our hydrodynamic model can quantitatively reproduce such coarsening dynamics. Then, considering periodically oscillating strains, we characterize the number of plastic rearrangements as a function of the external energy-supply, and show that they can be regarded as activated processes induced by a suitable "noise" effect. Here we use the word noise in a broad sense, referring to the internal non-equilibrium dynamics triggered by spatial random heterogeneities and coarsening. Finally, by exploring the interplay between the internal characteristic time-scale of the coarsening dynamics and the external time-scale associated with the imposed oscillating strain, we show that the system exhibits the phenomenon of stochastic resonance, thereby providing further credit to the mechanical activation scenario.
引用
收藏
页码:1271 / 1280
页数:10
相关论文
共 50 条
  • [1] Earthquake statistics and plastic events in soft-glassy materials
    Benzi, Roberto
    Kumar, Pinaki
    Toschi, Federico
    Trampert, Jeannot
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (03) : 1667 - 1674
  • [2] Coexistence of liquid and solid phases in flowing soft-glassy materials
    Coussot, P
    Raynaud, JS
    Bertrand, F
    Moucheront, P
    Guilbaud, JP
    Huynh, HT
    Jarny, S
    Lesueur, D
    PHYSICAL REVIEW LETTERS, 2002, 88 (21) : 2183011 - 2183014
  • [4] Understanding the effect of physical aging on slip dynamics in soft-glassy materials using pure elongation flow
    Chaudhary, Ishu
    Kaushal, Manish
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [5] Soft-Glassy Rheology of Asphaltenes at Liquid Interfaces
    Samaniuk, Joseph R.
    Hermans, Eline
    Verwijlen, Tom
    Pauchard, Vincent
    Vermant, Jan
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2015, 36 (10) : 1444 - 1451
  • [6] Non-locality and viscous drag effects on the shear localisation in soft-glassy materials
    Scagliarini, A.
    Dollet, B.
    Sbragaglia, M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 473 : 133 - 140
  • [7] The viscoelastic behaviour of raw and anaerobic digested sludge: Strong similarities with soft-glassy materials
    Baudez, Jean-Christophe
    Gupta, Rahul K.
    Eshtiaghi, Nicky
    Slatter, Paul
    WATER RESEARCH, 2013, 47 (01) : 173 - 180
  • [8] Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations
    Benzi, R.
    Sbragaglia, M.
    Succi, S.
    Bernaschi, M.
    Chibbaro, S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10):
  • [9] Rheological properties of soft-glassy flows from hydro-kinetic simulations
    Benzi, R.
    Bernaschi, M.
    Sbragaglia, M.
    Succi, S.
    EPL, 2013, 104 (04)
  • [10] Mechanical fluctuations suppress the threshold of soft-glassy solids: The secular drift scenario
    Pons, Adeline
    Amon, Axelle
    Darnige, Thierry
    Crassous, Jerome
    Clement, Eric
    PHYSICAL REVIEW E, 2015, 92 (02):