Nonequilibrium phase transition in negotiation dynamics

被引:65
|
作者
Baronchelli, Andrea
Dall'Asta, Luca
Barrat, Alain
Loreto, Vittorio
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] SMC INFM, I-00185 Rome, Italy
[3] Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain
[4] CNRS, LPT, UMR 8627, F-91405 Orsay, France
[5] Univ Paris 11, F-91405 Orsay, France
[6] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[7] ISI Fdn, Complex Networks Lagrange Lab, Turin, Italy
关键词
D O I
10.1103/PhysRevE.76.051102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms leading to opinion and convention formation in a population of individuals. The negotiation process, as opposed to "herdinglike" or "bounded confidence" driven processes, is based on a microscopic dynamics where memory and feedback play a central role. Our model displays a nonequilibrium phase transition from an absorbing state in which all agents reach a consensus to an active stationary state characterized either by polarization or fragmentation in clusters of agents with different opinions. We show the existence of at least two different universality classes, one for the case with two possible opinions and one for the case with an unlimited number of opinions. The phase transition is studied analytically and numerically for various topologies of the agents' interaction network. In both cases the universality classes do not seem to depend on the specific interaction topology, the only relevant feature being the total number of different opinions ever present in the system.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] COLLISIONLESS DYNAMICS OF THE NONEQUILIBRIUM SEMICONDUCTOR METAL PHASE-TRANSITION
    KOPAYEV, YV
    MENYAILENKO, VV
    MOLOTKOV, SN
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1985, 89 (04): : 1404 - 1415
  • [2] Stochastic Phase Transition Dynamics in Nonequilibrium System: Holographic Study
    Pagnacco, Maja C. C.
    Simovic-Pavlovic, Marina
    Grujic, Dusan Z.
    Vasiljevic, Darko M. M.
    Bokic, Bojana
    Mouchet, Seïbastien R.
    Verbiest, Thierry
    Caudano, Yves
    Kolaric, Branko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (22): : 10821 - 10825
  • [3] INHOMOGENEOUS MULTIPHASE MODEL FOR NONEQUILIBRIUM PHASE TRANSITION AND DROPLET DYNAMICS
    Gerber, A. G.
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A AND B, 2006, : 941 - 952
  • [4] Dynamical Phase Transition from Nonequilibrium Dynamics of Dark Solitons
    Guo, Minyong
    Keski-Vakkuri, Esko
    Liu, Hong
    Tian, Yu
    Zhang, Hongbao
    PHYSICAL REVIEW LETTERS, 2020, 124 (03)
  • [5] NONEQUILIBRIUM PHASE-TRANSITION IN A SYSTEM WITH CHAOTIC DYNAMICS - THE ABCDE MODEL
    FRIEDRICH, R
    HAKEN, H
    PHYSICS LETTERS A, 1992, 164 (3-4) : 299 - 304
  • [6] Inverted harmonic oscillator dynamics of the nonequilibrium phase transition in the Dicke model
    Gietka, Karol
    Busch, Thomas
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [7] Inhomogeneous multifluid model for prediction of nonequilibrium phase transition and droplet dynamics
    Gerber, A. G.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (03):
  • [8] On the nonequilibrium phase transition in protein
    Rapis, E.
    TECHNICAL PHYSICS, 2007, 52 (06) : 787 - 792
  • [9] On the nonequilibrium phase transition in protein
    E. Rapis
    Technical Physics, 2007, 52 : 787 - 792
  • [10] Dynamics of a nonequilibrium discontinuous quantum phase transition in a spinor Bose–Einstein condensate
    Matthew T. Wheeler
    Hayder Salman
    Magnus O. Borgh
    Communications Physics, 8 (1)