Geometric ergodicity of discrete-time approximations to multivariate diffusions

被引:0
|
作者
Hansen, NR [1 ]
机构
[1] Univ Copenhagen, Dept Stat & Operat Res, DK-2100 Copenhagen, Denmark
关键词
geometric drift; geometric ergodicity; Langevin diffusions; Markov chain Monte Carlo; Markov chains; stochastic differential equations;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A discrete-time approximation scheme called local linearization of the Langevin diffusion on R-k is considered, with emphasis on the ergodic properties of the approximation considered as a discrete-time Markov chain. We will derive criteria for the scheme to be geometrically ergodic, and illustrate the use of these criteria by means of examples. Furthermore, we discuss the scheme in relation to other schemes and the use of such discretization schemes as proposals in a Metropolis-Hastings algorithm.
引用
收藏
页码:725 / 743
页数:19
相关论文
共 50 条
  • [1] GEOMETRIC ERGODICITY AND QUASI-STATIONARITY IN DISCRETE-TIME BIRTH-DEATH PROCESSES
    VANDOORN, EA
    SCHRIJNER, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1995, 37 : 121 - 144
  • [2] A CONDITION OF ERGODICITY FOR DISCRETE-TIME BILINEAR MODELS
    GUEGAN, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (09): : 537 - 540
  • [3] DISCRETE-TIME STATISTICAL INFERENCE FOR MULTISCALE DIFFUSIONS
    Gailus, Siragan
    Spiliopoulos, Konstantinos
    MULTISCALE MODELING & SIMULATION, 2018, 16 (04): : 1824 - 1858
  • [4] Discrete-time approximations of Fliess operators
    W. Steven Gray
    Luis A. Duffaut Espinosa
    Kurusch Ebrahimi-Fard
    Numerische Mathematik, 2017, 137 : 35 - 62
  • [5] Discrete-Time Approximations of Fliess Operators
    Gray, W. Steven
    Espinosa, Luis A. Duffaut
    Ebrahimi-Fard, Kurusch
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2433 - 2439
  • [6] Discrete-time approximations of Fliess operators
    Gray, W. Steven
    Espinosa, Luis A. Duffaut
    Ebrahimi-Fard, Kurusch
    NUMERISCHE MATHEMATIK, 2017, 137 (01) : 35 - 62
  • [7] UNIFORM APPROXIMATIONS OF DISCRETE-TIME FILTERS
    Heine, Kari
    Crisan, Dan
    ADVANCES IN APPLIED PROBABILITY, 2008, 40 (04) : 979 - 1001
  • [8] THE DISCRETE-TIME GEOMETRIC MAXIMUM PRINCIPLE
    Kipka, Robert
    Gupta, Rohit
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2939 - 2961
  • [9] Normal approximations for discrete-time occupancy processes
    Hodgkinson, Liam
    McVinish, Ross
    Pollett, Philip K.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (10) : 6414 - 6444
  • [10] Finite approximations of a discrete-time fractional derivative
    Stanislawski, Rafal
    Hunek, Wojciech P.
    Latawiec, Krzysztof J.
    2011 16TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, 2011, : 142 - 145