A Large Dimensional Analysis of Least Squares Support Vector Machines

被引:16
|
作者
Liao, Zhenyu [1 ]
Couillet, Romain [1 ]
机构
[1] Univ Paris Sud, Cent Supelec, Lab Signaux & Syst, CNRS, F-91192 Gif Sur Yvette, France
关键词
High dimensional statistics; kernel methods; random matrix theory; support vector machines; PARAMETERS; SELECTION; OPTIMIZATION;
D O I
10.1109/TSP.2018.2889954
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a large dimensional performance analysis of kernel least squares support vector machines (LS-SVMs) is provided under the assumption of a two-class Gaussian mixture model for the input data. Building upon recent advances in a random matrix theory, we show, when the dimension of data p and their number n are both large, that the LS-SVM decision function can be well approximated by a normally distributed random variable, the mean and variance of which depend explicitly on a local behavior of the kernel function. This theoretical result is then applied to the MNIST and Fashion-MNIST datasets which, despite their non-Gaussianity, exhibit a convincingly close behavior. Most importantly, our analysis provides a deeper understanding of the mechanism into play in SVM-type methods and in particular of the impact on the choice of the kernel function as well as some of their theoretical limits in separating high-dimensional Gaussian vectors.
引用
收藏
页码:1065 / 1074
页数:10
相关论文
共 50 条
  • [1] Digital Least Squares Support Vector Machines
    Davide Anguita
    Andrea Boni
    Neural Processing Letters, 2003, 18 : 65 - 72
  • [2] Fuzzy least squares support vector machines
    Tsujinishi, D
    Abe, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1599 - 1604
  • [3] Digital Least Squares Support Vector Machines
    Anguita, D
    Boni, A
    NEURAL PROCESSING LETTERS, 2003, 18 (01) : 65 - 72
  • [4] Recurrent least squares support vector machines
    Suykens, JAK
    Vandewalle, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (07): : 1109 - 1114
  • [5] Least Squares Support Vector Machines Based on Support Vector Degrees
    Li, Lijuan
    Li, Youfeng
    Su, Hongye
    Chu, Jian
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 1275 - 1281
  • [6] Kernel canonical correlation analysis and least squares Support Vector Machines
    Van Gestel, T
    Suykens, JAK
    De Brabanter, J
    De Moor, B
    Vandewalle, J
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 384 - 389
  • [7] Fuzzy least squares twin support vector machines
    Sartakhti, Javad Salimi
    Afrabandpey, Homayun
    Ghadiri, Nasser
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 402 - 409
  • [8] Research on Least Squares Support Vector Machines Algorithm
    Ming, Zhao
    PROCEEDINGS OF THE 2015 INTERNATIONAL INDUSTRIAL INFORMATICS AND COMPUTER ENGINEERING CONFERENCE, 2015, : 1432 - 1435
  • [9] Regularized Recurrent Least Squares Support Vector Machines
    Qui, Hai-Ni
    Oussar, Yacine
    Dreyfus, Gerard
    Xu, Weisheng
    2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 508 - +
  • [10] Coupled Least Squares Support Vector Ensemble Machines
    Wornyo, Dickson Keddy
    Shen, Xiang-Jun
    INFORMATION, 2019, 10 (06)