Critical behavior of a probabilistic cellular automaton describing a biological system

被引:11
|
作者
Ortega, NRS
Pinheiro, CFD
Tome, T
de Felicio, JRD
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315 Sao Paulo, Brazil
[2] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, BR-14040901 Ribeirao Preto, Brazil
关键词
D O I
10.1016/S0378-4371(98)00049-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study nonequilibrium phase transitions occurring in a probabilistic cellular automaton which describes one part of the immune system. In this model, each site can be occupied by three type of cells and the immune response under parasitic infections is described in terms of two parameters p and r. The local rules governing the evolution of this automaton possess "up-down" symmetry similar to Ising models. Performing Monte Carlo simulations on square and cubic lattices we verify that the model displays continuous kinetic phase transitions with spontaneous symmetry breaking. We present detailed simulations and analysis of the critical behavior. Our results indicate that the model belongs to the Ising universality class, supporting the "up-down" conjecture. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:189 / 200
页数:12
相关论文
共 50 条
  • [1] Probabilistic cellular automaton describing a biological immune system
    Tome, T
    deFelicio, JRD
    PHYSICAL REVIEW E, 1996, 53 (04) : 3976 - 3981
  • [2] Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton
    Mendonca, J. Ricardo G.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [3] Probabilistic cellular automata describing biological two-species system
    De Carvalho, KC
    Tomé, T
    MODERN PHYSICS LETTERS B, 2004, 18 (17): : 873 - 880
  • [4] Critical phenomena in an one-dimensional probabilistic cellular automaton
    Bhattacharyya, P
    PHYSICA A, 1996, 234 (1-2): : 427 - 434
  • [5] Dynamic critical properties of a one-dimensional probabilistic cellular automaton
    Bhattacharyya, P
    EUROPEAN PHYSICAL JOURNAL B, 1998, 3 (02): : 247 - 252
  • [6] Dynamic critical properties of a one-dimensional probabilistic cellular automaton
    P. Bhattacharyya
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 3 : 247 - 252
  • [7] Anisotropic probabilistic cellular automaton for a predator-prey system
    de Carvalho, Kelly C.
    Tome, Tania
    BRAZILIAN JOURNAL OF PHYSICS, 2007, 37 (2A) : 466 - 471
  • [8] The spectral gap and the dynamical critical exponent of an exact solvable probabilistic cellular automaton
    Lazo, M. J.
    Ferreira, A. A.
    Alcaraz, F. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 438 : 56 - 65
  • [9] Regional Synchronization of a Probabilistic Cellular Automaton
    Bagnoli, Franco
    Rechtman, Raul
    CELLULAR AUTOMATA (ACRI 2018), 2018, 11115 : 255 - 263
  • [10] Probabilistic cellular automaton for random walkers
    Nishidate, K
    Baba, M
    Chiba, H
    Ito, T
    Kodama, K
    Nishikawa, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (05) : 1352 - 1355