HARDY-TYPE INEQUALITIES WITH SHARP CONSTANTS IN DOMAINS LAMBDA-CLOSE TO CONVEX

被引:2
|
作者
Avkhadiev, F. G. [1 ]
机构
[1] KAZAN VOLGA DOMAIN FED UNIV, LOBACHEVSKY INST MATH & MECH, Kazan, Russia
关键词
Hardy-type inequality; weakly convex domain; gradient of the distance function; WEAK CONVEXITY; SETS;
D O I
10.1134/S0037446622030016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We justify new integral inequalities with sharp constants for real-valued functions vanishing on the boundary of a domain of Euclidean space on assuming the domain lambda-close to convex. In particular, the closure of such domain is weakly convex in the sense of Efimov-Stechkin and Vial. We describe both standard and strengthen Hardy-type inequalities when instead of the gradients of test functions we use the inner products of the gradients of the distance function from a point to the boundary of the domain by test functions. To prove our main theorem, we apply several lemmas of significance in their own right.
引用
收藏
页码:395 / 411
页数:17
相关论文
共 50 条
  • [1] Hardy-Type Inequalities with Sharp Constants in Domains Lambda-Close to Convex
    F. G. Avkhadiev
    Siberian Mathematical Journal, 2022, 63 : 395 - 411
  • [2] Sharp Hardy-type inequalities with Lamb's constants
    Avkhadiev, F. G.
    Wirths, K. -J.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (04) : 723 - 736
  • [3] Unified Poincare and Hardy inequalities with sharp constants for convex domains
    Avkhadiev, Farit G.
    Wirths, Karl-Joachim
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (8-9): : 632 - 642
  • [4] Hardy-type Inequalities for Convex Functions
    Anthonio, Y. O.
    Rauf, K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 263 - 271
  • [5] Sharp constants in hardy type inequalities
    Avkhadiev F.G.
    Russian Mathematics, 2015, 59 (10) : 53 - 56
  • [6] SHARP CONFORMALLY INVARIANT HARDY-TYPE INEQUALITIES WITH REMAINDERS
    Nasibullin, R. G.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (03): : 46 - 56
  • [7] Best constants in bipolar Lp Hardy-type inequalities
    Cazacu, Cristian
    Rugina, Teodor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [8] Hardy-type inequalities
    Radha, R
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456
  • [9] Hardy-type inequalities
    Davila, J
    Dupaigne, L
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (03) : 335 - 365
  • [10] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33