Alleviating Cold-Start Problems in Recommendation through Pseudo-Labelling over Knowledge Graph

被引:20
|
作者
Togashi, Riku [1 ]
Otani, Mayu [1 ]
Satoh, Shin'chi [1 ]
机构
[1] CyberAgent Inc, Tokyo, Japan
关键词
knowledge graph; cold-start recommendation; knowledge-aware recommendation; graph neural networks; semi-supervised learning;
D O I
10.1145/3437963.3441773
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solving cold-start problems is indispensable to provide meaningful recommendation results for new users and items. Under sparsely observed data, unobserved user-item pairs are also a vital source for distilling latent users' information needs. Most present works leverage unobserved samples for extracting negative signals. However, such an optimisation strategy can lead to biased results toward already popular items by frequently handling new items as negative instances. In this study, we tackle the cold-start problems for new users/items by appropriately leveraging unobserved samples. We propose a knowledge graph (KG)-aware recommender based on graph neural networks, which augments labelled samples through pseudo-labelling. Our approach aggressively employs unobserved samples as positive instances and brings new items into the spotlight. To avoid exhaustive label assignments to all possible pairs of users and items, we exploit a KG for selecting probably positive items for each user. We also utilise an improved negative sampling strategy and thereby suppress the exacerbation of popularity biases. Through experiments, we demonstrate that our approach achieves improvements over the state-of-the-art KG-aware recommenders in a variety of scenarios; in particular, our methodology successfully improves recommendation performance for cold-start users/items.
引用
收藏
页码:931 / 939
页数:9
相关论文
共 35 条
  • [1] MetaKG: Meta-Learning on Knowledge Graph for Cold-Start Recommendation
    Du, Yuntao
    Zhu, Xinjun
    Chen, Lu
    Fang, Ziquan
    Gao, Yunjun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 9850 - 9863
  • [2] A Heterogeneous Graph Neural Model for Cold-start Recommendation
    Liu, Siwei
    Ounis, Iadh
    Macdonald, Craig
    Meng, Zaiqiao
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2029 - 2032
  • [3] Meta-learning on dynamic node clustering knowledge graph for cold-start recommendation
    Pan, Hui
    Luo, Senlin
    Li, Xinshuai
    Pan, Limin
    Wu, Zhouting
    NEUROCOMPUTING, 2024, 602
  • [4] Embedding Guarantor: Knowledge-Enhanced Graph Learning for New Item Cold-Start Recommendation
    Zhang, Zhipeng
    Zhu, Youfu
    Dong, Mianxiong
    Ota, Kaoru
    Zhang, Yao
    Ren, Yonggong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025,
  • [5] SVD++ AND CLUSTERING APPROACHES TO ALLEVIATING THE COLD-START PROBLEM FOR RECOMMENDATION SYSTEMS
    Al-Sabaawi, Ali Mohsin Ahmed
    Karacan, Hacer
    Yenice, Yusuf Erkan
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2021, 17 (02): : 383 - 396
  • [6] Graph attention networks with adaptive neighbor graph aggregation for cold-start recommendation
    Hu, Qian
    Tan, Lei
    Gong, Daofu
    Li, Yan
    Bu, Wenjuan
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 293 - 312
  • [7] Intelligent Service Recommendation for Cold-Start Problems in Edge Computing
    Zhou, Yichao
    Tang, Zhenmin
    Qi, Lianyong
    Zhang, Xuyun
    Dou, Wanchun
    Wan, Shaohua
    IEEE ACCESS, 2019, 7 : 46637 - 46645
  • [8] Analyzing Item Features for Cold-Start Problems in Recommendation Systems
    Kim, Soryoung
    Choi, Sang-Min
    Han, Yo-Sub
    Man, Ka Lok
    Wan, Kaiyu
    2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, : 167 - 170
  • [9] Cold-start News Recommendation with Domain-dependent Browse Graph
    Trevisiol, Michele
    Aiello, Luca Maria
    Schifanella, Rossano
    Jaimes, Alejandro
    PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), 2014, : 81 - 88
  • [10] Content-based Graph Reconstruction for Cold-start Item Recommendation
    Kim, Jinri
    Kim, Eungi
    Yeo, Kwangeun
    Jeon, Yujin
    Kim, Chanwoo
    Lee, Sewon
    Lee, Joonseok
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1263 - 1273