Symmetries of Julia sets

被引:3
|
作者
Beardon, AF
机构
来源
MATHEMATICAL INTELLIGENCER | 1996年 / 18卷 / 01期
关键词
D O I
10.1007/BF03024815
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:43 / 44
页数:2
相关论文
共 50 条
  • [1] SYMMETRIES OF JULIA SETS
    BEARDON, AF
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 576 - 582
  • [2] SYMMETRIES OF JULIA SETS FOR RATIONAL MAPS
    Ferreira, Gustavo Rodrigues
    CONFORMAL GEOMETRY AND DYNAMICS, 2023, 27 : 145 - 160
  • [3] Julia Sets of Rational Maps with Rotational Symmetries
    Nayak, Tarakanta
    Pal, Soumen
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 19 (01)
  • [4] Symmetries of the Julia sets of Konig's methods for polynomials
    Liu, Gang
    Gao, Junyang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 356 - 366
  • [5] Rational maps with half symmetries, Julia sets, and Multibrot sets in parameter planes
    Hu, Jun
    Jimenez, Francisco G.
    Muzician, Oleg
    CONFORMAL DYNAMICS AND HYPERBOLIC GEOMETRY, 2012, 573 : 119 - 146
  • [6] ON THE SYMMETRIES OF THE JULIA SETS FOR THE PROCESS Z-]ZP + C
    LAKHTAKIA, A
    VARADAN, VV
    MESSIER, R
    VARADAN, VK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (11): : 3533 - &
  • [7] Self-overlays and symmetries of Julia sets of expanding maps
    Extremiana Aldana, Jose Ignacio
    Hernandez Paricio, Luis Javier
    Rivas Rodriguez, Maria Teresa
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (03) : 829 - 848
  • [8] Self-overlays and symmetries of Julia sets of expanding maps
    José Ignacio Extremiana Aldana
    Luis Javier Hernández Paricio
    María Teresa Rivas Rodríguez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 829 - 848
  • [9] Symmetries of the Julia sets of Newton's method for multiple root
    Yang, Weifeng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2490 - 2494
  • [10] Symmetries and Dynamics of Generalized Biquaternionic Julia Sets Defined by Various Polynomials
    Katunin, Andrzej
    SYMMETRY-BASEL, 2023, 15 (01):