Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant

被引:0
|
作者
Brandhorst, Simon [1 ]
机构
[1] Leibniz Univ Hannover, Insitut Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
关键词
D O I
10.4310/MRL.2018.v25.n4.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant sigma = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case sigma = 1 and the cone conjecture for K3 surfaces.
引用
收藏
页码:1143 / 1150
页数:8
相关论文
共 50 条