Magnetoelastic coupling enabled tunability of magnon spin current generation in two-dimensional antiferromagnets

被引:16
|
作者
Bazazzadeh, N. [1 ]
Hamdi, M. [1 ,6 ]
Park, S. [2 ,3 ,4 ]
Khavasi, A. [5 ]
Mohseni, S. M. [1 ]
Sadeghi, A. [1 ]
机构
[1] Shahid Beheshti Univ, Dept Phys, Tehran 1983969411, Iran
[2] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 08826, South Korea
[3] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[4] Seoul Natl Univ, Ctr Theoret Phys CTP, Seoul 08826, South Korea
[5] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
[6] Ecole Polytech Fed Lausanne, Inst Mat IMX, Lab Nanoscale Magnet Mat & Magnon LMGN, Sch Engn STI, CH-1015 Lausanne, Switzerland
基金
新加坡国家研究基金会;
关键词
MPS3; M; CRSITE3; WAVES; MN; FE;
D O I
10.1103/PhysRevB.104.L180402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate the magnetoelastic coupling (MEC) and its effect on magnon transport in two-dimensional antiferromagnets with a honeycomb lattice. MEC coefficients along with magnetic exchange parameters and spring constants are computed for monolayers of transition-metal trichalcogenides with Neel magnetic order (MnPS3 and VPS3) and zigzag order (CrSiTe3, NiPS3, and NiPSe3) by ab initio calculations. Using these parameters, we predict that the spin-Nernst coefficient is significantly enhanced due to magnetoelastic coupling. Our study shows that although Dzyaloshinskii-Moriya interaction can produce spin-Nernst effect in these materials, other mechanisms such as magnon-phonon coupling should be taken into account. We also demonstrate that the magnetic anisotropy is an important factor for control of magnon-phonon hybridization and enhancement of the Berry curvature and thus the spin-Nernst coefficient. Our results pave the way toward gate tunable spin current generation in two-dimensional magnets by spin-Nernst effect via electric field modulation of MEC and anisotropy.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Two-dimensional magnon spin transport
    Jungfleisch, M. Benjamin
    NATURE MATERIALS, 2022, 21 (12) : 1348 - 1349
  • [2] Two-dimensional magnon spin transport
    M. Benjamin Jungfleisch
    Nature Materials, 2022, 21 : 1348 - 1349
  • [3] Spin Hall effect and spin current generation in two-dimensional systems with random Rashba spin-orbit coupling
    Dugaev, V. K.
    Inglot, M.
    Sherman, E. Ya.
    Barnas, J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (21) : 3573 - 3575
  • [4] Spin orthogonality catastrophe in two-dimensional antiferromagnets and superconductors
    Sachdev, S
    Troyer, M
    Vojta, M
    PHYSICAL REVIEW LETTERS, 2001, 86 (12) : 2617 - 2620
  • [5] Spin dynamics in two-dimensional quantum Heisenberg antiferromagnets
    Nagao, T
    Igarashi, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (03) : 1029 - 1036
  • [6] Spin dynamics in two-dimensional percolating Heisenberg antiferromagnets
    Itoh, S
    Ikeda, H
    Yoshizawa, H
    Harris, MJ
    Steigenberger, U
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (10) : 3610 - 3616
  • [7] Two-dimensional centrosymmetrical antiferromagnets for spin photogalvanic devices
    Peng Jiang
    Xixi Tao
    Hua Hao
    Yushen Liu
    Xiaohong Zheng
    Zhi Zeng
    npj Quantum Information, 7
  • [8] Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
    Shimahara, Hiroshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (04)
  • [9] Two-dimensional XY model with the account of magnetoelastic coupling
    Fridman, YA
    Spirin, DV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2001, 225 (01): : 163 - 169
  • [10] Two-dimensional centrosymmetrical antiferromagnets for spin photogalvanic devices
    Jiang, Peng
    Tao, Xixi
    Hao, Hua
    Liu, Yushen
    Zheng, Xiaohong
    Zeng, Zhi
    NPJ QUANTUM INFORMATION, 2021, 7 (01)