On k-critical 2k-connected graphs

被引:0
|
作者
Su, JJ [1 ]
Yuan, XD [1 ]
Zhao, QF [1 ]
机构
[1] Guangxi Normal Univ, Dept Math, Guilin 541004, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2003年 / 46卷 / 03期
关键词
k-critical n-connected; fragment; second-end;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called an (n, k)-graph if kappa(G - S) = n - \S\ for any S subset of or equal to V(G) with \S\ less than or equal to k., where kappa(G) denotes the connectivity of G. Mader conjectured that for k greater than or equal to 3 the graph K2k+2-(1-factor) is the unique (2k, k)-graph. Kriesell has settled two special cases for k = 3, 4. We prove the conjecture for the general case k greater than or equal to 5.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 50 条