SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco

被引:21
|
作者
Ma, Xiaocui [1 ]
Wang, Guodong [1 ,2 ]
Zhao, Weiyang [1 ]
Yang, Minmin [1 ]
Ma, Nana [1 ]
Kong, Fanying [1 ]
Dong, Xinchun [1 ]
Meng, Qingwei [1 ]
机构
[1] Shandong Agr Univ, State Key Lab Crop Biol, Coll Life Sci, 61 Dai Zong St, Tai An 271018, Shandong, Peoples R China
[2] Jining Med Univ, Coll Biol Sci, Rizhao 276800, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Drought stress; PSII photoinhibition; SlCOR413IM1; Tomato; Transgenic tobacco; ARABIDOPSIS-THALIANA COR15A; TRANSCRIPTION FACTOR; ABSCISIC-ACID; ANTIOXIDATIVE ENZYMES; FREEZING TOLERANCE; PROTEIN; CHLOROPLAST; OVEREXPRESSION; RESISTANCE; EXPRESSION;
D O I
10.1016/j.jplph.2017.03.016
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress adversely affects plant growth, development, and productivity. Genes functioning in plant response to drought stress are essential for drought tolerance. In this study, SlCOR413IM1, a cold-regulated gene isolated from Solanum lycopersium, was transferred to Nicotiana tabacum to investigate its function under drought stress. The subcellular localisation of SlCOR413IM1-GFP fusion protein in Arabidopsis protoplasts suggested that SlCOR413IM1 is a chloroplast protein. Expression analyses revealed that SlCOR413IM1 responded to drought and cold stresses. Under drought stress, transgenic plants maintained the high maximum photochemical efficiency, net photosynthetic rate (Pn) and D1 protein content of photosystem II ( PSII). Compared with wild-type (WT) plants, transgenic plants showed higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline and soluble sugar content, which reduced reactive oxygen species (ROS) generation. However, the high SOD and APX activities in transgenic plants were independent of their transcription levels. Moreover, the transgenic plants exhibited better seed germination, water status and survival, as well as lower malondialdehyde (MDA) content and relative electrical conductivity (REC) than WT plants under drought stress. Taken together, these data demonstrated that overexpression of SlCOR413IM1 enhanced drought stress tolerance in transgenic tobacco.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [1] Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants
    Ma, Xiaocui
    Chen, Chong
    Yang, Minmin
    Dong, Xinchun
    Lv, Wei
    Meng, Qingwei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 124 : 29 - 39
  • [2] A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis
    Zhou, Aimin
    Sun, Hongwei
    Feng, Shuang
    Zhou, Mi
    Gong, Shufang
    Wang, Jingang
    Zhang, Shuzhen
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (02) : 1688 - 1694
  • [3] Overexpression of the CpCOR413PM1 Gene from Wintersweet (Chimonanthus praecox) Enhances Cold and Drought Tolerance in Arabidopsis
    Deng, Yeyuan
    Lin, Yi
    Wei, Guo
    Hu, Xiaoqian
    Zheng, Yanghui
    Ma, Jing
    HORTICULTURAE, 2024, 10 (06)
  • [4] OsDREB1 Gene from Rice Enhances Cold Tolerance in Tobacco
    李萍
    陈峰
    全超
    张贵友
    TsinghuaScienceandTechnology, 2005, (04) : 478 - 483
  • [5] OsDREB1 gene from rice enhances cold tolerance in tobacco
    Li, Ping
    Chen, Feng
    Quan, Chao
    Zhang, Guiyou
    Tsinghua Science and Technology, 2005, 10 (04) : 478 - 483
  • [6] Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants
    Xinyong Guo
    Li Zhang
    Jianbo Zhu
    Aiying Wang
    Hongling Liu
    Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 129 : 469 - 481
  • [7] Christolea crassifolia HARDY gene enhances drought stress tolerance in transgenic tomato plants
    Guo, Xinyong
    Zhang, Li
    Zhu, Jianbo
    Wang, Aiying
    Liu, Hongling
    PLANT CELL TISSUE AND ORGAN CULTURE, 2017, 129 (03) : 469 - 481
  • [8] Cold-regulated gene LeCOR413PM2 confers cold stress tolerance in tomato plants
    Zhang, Li
    Guo, Xinyong
    Zhang, Zexing
    Wang, Aiying
    Zhu, Jianbo
    GENE, 2021, 764
  • [9] GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton
    Liu, Jiangna
    Mehari, Teame Gereziher
    Xu, Yanchao
    Umer, Muhammad Jawad
    Hou, Yuqing
    Wang, Yuhong
    Peng, Renhai
    Wang, Kunbo
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [10] Overexpression of tomato WHIRLY protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco
    Zhao, S. -Y.
    Wang, G. -D.
    Zhao, W. -Y.
    Zhang, S.
    Kong, F. -Y.
    Dong, X. -C.
    Meng, Q. -W.
    BIOLOGIA PLANTARUM, 2018, 62 (01) : 55 - 68