Bayesian Lasso for Semiparametric Structural Equation Models

被引:48
|
作者
Guo, Ruixin [1 ]
Zhu, Hongtu [1 ]
Chow, Sy-Miin [2 ]
Ibrahim, Joseph G. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Psychol, Chapel Hill, NC USA
基金
美国国家科学基金会;
关键词
Bayesian Lasso; Latent variable; Spline; Structural equation model; REGRESSION;
D O I
10.1111/j.1541-0420.2012.01751.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set of latent endogenous variables. A basis representation is used to approximate these nonparametric functions in the structural equation and the Bayesian Lasso method coupled with a Markov Chain Monte Carlo (MCMC) algorithm is used for simultaneous estimation and model selection. The proposed method is illustrated using a simulation study and data from the Affective Dynamics and Individual Differences (ADID) study. Results demonstrate that our method can accurately estimate the unknown parameters and correctly identify the true underlying model.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 50 条
  • [1] Structure detection of semiparametric structural equation models with Bayesian adaptive group lasso
    Feng, Xiang-Nan
    Wang, Guo-Chang
    Wang, Yi-Fan
    Song, Xin-Yuan
    STATISTICS IN MEDICINE, 2015, 34 (09) : 1527 - 1547
  • [2] A semiparametric Bayesian approach for structural equation models
    Song, Xin-Yuan
    Pan, Jun-Hao
    Kwok, Timothy
    Vandenput, Liesbeth
    Ohlsson, Claes
    Leung, Ping-Chung
    BIOMETRICAL JOURNAL, 2010, 52 (03) : 314 - 332
  • [3] Bayesian Semiparametric Structural Equation Models with Latent Variables
    Mingan Yang
    David B. Dunson
    Psychometrika, 2010, 75 : 675 - 693
  • [4] Bayesian local influence of semiparametric structural equation models
    Ouyang, Ming
    Yan, Xiaodong
    Chen, Ji
    Tang, Niansheng
    Song, Xinyuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 102 - 115
  • [5] Bayesian Semiparametric Structural Equation Models with Latent Variables
    Yang, Mingan
    Dunson, David B.
    PSYCHOMETRIKA, 2010, 75 (04) : 675 - 693
  • [6] Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
    Song, Xin-Yuan
    Xia, Ye-Mao
    Pan, Jun-Hao
    Lee, Sik-Yum
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2011, 18 (01) : 55 - 72
  • [7] Semiparametric Bayesian analysis of structural equation models with fixed covariates
    Lee, Sik-Yum
    Lu, Bin
    Song, Xin-Yuan
    STATISTICS IN MEDICINE, 2008, 27 (13) : 2341 - 2360
  • [8] A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models
    Song, Xin-Yuan
    Lu, Zhao-Hua
    Cai, Jing-Heng
    Ip, Edward Hak-Sing
    PSYCHOMETRIKA, 2013, 78 (04) : 624 - 647
  • [9] A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models
    Xin-Yuan Song
    Zhao-Hua Lu
    Jing-Heng Cai
    Edward Hak-Sing Ip
    Psychometrika, 2013, 78 : 624 - 647
  • [10] Bayesian adaptive group lasso with semiparametric hidden Markov models
    Kang, Kai
    Song, Xinyuan
    Hu, X. Joan
    Zhu, Hongtu
    STATISTICS IN MEDICINE, 2019, 38 (09) : 1634 - 1650