Linear Manifold Regularization with Adaptive Graph for Semi-supervised Dimensionality Reduction

被引:0
|
作者
Xiong, Kai [1 ]
Nie, Feiping [1 ,2 ]
Han, Junwei [1 ]
机构
[1] Northwestern Ploytech Univ, Xian 710072, Peoples R China
[2] Univ Texas Arlington, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many previous graph-based methods perform dimensionality reduction on a pre-defined graph. However, due to the noise and redundant information in the original data, the pre-defined graph has no clear structure and may not be appropriate for the subsequent task. To overcome the drawbacks, in this paper, we propose a novel approach called linear manifold regularization with adaptive graph (LMRAG) for semi-supervised dimensionality reduction. LMRAG directly incorporates the graph construction into the objective function, thus the projection matrix and the adaptive graph can be simultaneously optimized. Due to the structure constraint, the learned graph is sparse and has clear structure. Extensive experiments on several benchmark datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:3147 / 3153
页数:7
相关论文
共 50 条
  • [1] Semi-supervised manifold regularization with adaptive graph construction
    Wang, Yunyun
    Meng, Yan
    Li, Yun
    Chen, Songcan
    Fu, Zhenyong
    Xue, Hui
    PATTERN RECOGNITION LETTERS, 2017, 98 : 90 - 95
  • [2] Adaptive Semi-Supervised Dimensionality Reduction
    Wei, Jia
    Wang, Jiabing
    Ma, Qianli
    Wang, Xuan
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 684 - 691
  • [3] Relative manifold based semi-supervised dimensionality reduction
    Cai, Xianfa
    Wen, Guihua
    Wei, Jia
    Yu, Zhiwen
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (06) : 923 - 932
  • [4] Relative manifold based semi-supervised dimensionality reduction
    Xianfa Cai
    Guihua Wen
    Jia Wei
    Zhiwen Yu
    Frontiers of Computer Science, 2014, 8 : 923 - 932
  • [5] Sub-Graph Regularization on Kernel Regression for Robust Semi-Supervised Dimensionality Reduction
    Liu, Jiao
    Zhao, Mingbo
    Kong, Weijian
    ENTROPY, 2019, 21 (11)
  • [6] A robust semi-supervised regressor with correntropy-induced manifold regularization and adaptive graph
    Zheng, Xiaohan
    Zhang, Li
    Yan, Leilei
    Zhao, Lei
    Neural Networks, 2025, 182
  • [7] Graph Convolution Networks with manifold regularization for semi-supervised learning
    Kejani, M. Tavassoli
    Dornaika, F.
    Talebi, H.
    NEURAL NETWORKS, 2020, 127 : 160 - 167
  • [8] Semi-supervised dimensionality reduction based on composite graph
    Yu, Guoxian, 1600, Binary Information Press (10):
  • [9] Mixture graph based semi-supervised dimensionality reduction
    Yu G.X.
    Peng H.
    Wei J.
    Ma Q.L.
    Pattern Recognition and Image Analysis, 2010, 20 (04) : 536 - 541
  • [10] Erratum to: Relative manifold based semi-supervised dimensionality reduction
    Xianfa Cai
    Guihua Wen
    Jia Wei
    Zhiwen Yu
    Frontiers of Computer Science, 2020, 14 : 236 - 236