A note on minimal dispersion of point sets in the unit cube

被引:17
|
作者
Sosnovec, Jakub [1 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
关键词
EMPTY RECTANGLE;
D O I
10.1016/j.ejc.2017.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the dispersion of a point set, a notion closely related to the discrepancy. Given a real r is an element of (0, 1) and an integer d >= 2, let N(r, d) denote the minimum number of points inside the d dimensional unit cube [0, 1](d) such that they intersect every axis aligned box inside [0, 1](d) of volume greater than r. We prove an upper bound on N(r, d), matching a lower bound of Aistleitner et al. up to a multiplicative constant depending only on r. This fully determines the rate of growth of N(r, d) if r is an element of (0, 1) is fixed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 259
页数:5
相关论文
共 50 条
  • [1] Minimal dispersion on the cube and the torus
    Arman, A.
    Litvak, A. E.
    JOURNAL OF COMPLEXITY, 2024, 85
  • [2] The minimal k-dispersion of point sets in high dimensions
    Hinrichs, Aicke
    Prochno, Joscha
    Ullrich, Mario
    Vybiral, Jan
    JOURNAL OF COMPLEXITY, 2019, 51 : 68 - 78
  • [3] A note on balanced independent sets in the cube
    Barber, Ben
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 205 - 207
  • [4] Minimal dispersion of large volume boxes in the cube
    MacKay, Kurt S.
    JOURNAL OF COMPLEXITY, 2022, 72
  • [5] A NOTE ON MINIMAL TRIANGULATIONS OF AN N-CUBE
    SALLEE, JF
    DISCRETE APPLIED MATHEMATICS, 1982, 4 (03) : 211 - 215
  • [6] On ω-limit sets of triangular maps on the unit cube
    Gallego, FB
    Guirao, JLG
    Casado, JIM
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) : 289 - 304
  • [7] Note on the Number of Balanced Independent Sets in the Hamming Cube
    Park, Jinyoung
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02): : 1 - 9
  • [8] A note on diameters of point sets
    Charles Audet
    Xavier Fournier
    Pierre Hansen
    Frédéric Messine
    Optimization Letters, 2010, 4 : 585 - 595
  • [9] A note on diameters of point sets
    Audet, Charles
    Fournier, Xavier
    Hansen, Pierre
    Messine, Frederic
    OPTIMIZATION LETTERS, 2010, 4 (04) : 585 - 595
  • [10] A Note on Minimal Separating Function Sets
    Raushan Buzyakova
    Oleg Okunev
    Lobachevskii Journal of Mathematics, 2019, 40 : 149 - 155